Contemporary Control
Systems Inc.

Programmer Guide
COM 20020/22 Null Stack Driver

for

Al-SRVR
Al-USB
PCI120/22
USB22

DLL Driver for Windows 2K/XP/Vista
version 1.2 4/14/04

SION 1.5 6/8/2004

Table of Contents

Table Of CONENTSeiiiiiiie et e e e 1
NUII StACK DIVEN OVEIVIEWeeiieiiiiiiiee ettt ettt saeneeee s 3
Provided FIlESooiieiee e 4
L [E510] O OPP PO PPPRTPPPPPPPTPTPPN 4
REFEIENCES ... e 5
D11V g @] o =T =1 1o o IO P TSP PPT T PUPPRTO 5
ARCNET CONSIAEIALIONSeieiiiieieieeiiiiee ettt aib e e s ibree e e e aneeee 5
Hardware CONSIAEIAIONSuueiieeiiiiiiie ettt e e 6
Driver Control COdes/FUNCHONSoocuuiiiiiiiiiiiie e 7
Com20020Init(COM20020_CONFIG *cfg, UCHAR device, UCHAR hdwe) 7
Com20020Transmit(COM20020_TRANSMIT_BUFFER *txbuf)c.cccccvennee 9
COM20020EXIE(VOI)vveeeeeeiiieie ettt e e 9
Com20020Receive(COM20020_RECEIVE_BUFFER *rxbuf)cccocerviieenne 9
Com20020Status(COM20020_STATUS *SEAUS)ccuvveeeivreeiriieeeiieeesniieeesieeans 10
Com20020Register(COM20020_REGISTER *1eQ)veeeriureeiiiieeeniieeiieee e 11
Com20020CaNCEITX(VOIT)ciuvreeeeeiiiiiie ettt 11
Com20020WakeOnReceive(HANDLE receiveEvent)ccccovvvveeeeiiiiiieecens 11
Com20020ResetWakeOnReceive(VOId)ccoiiiiieeriiiiieeeriiee et 11
Com20020WakeOnTXComplete(HANDLE transmitEvent)ccccceevnieneen. 11
Com20020ResetWakeOnTXComplete(Void)coeeviiiiiiiiiiiiiieeiieeeeeeeeee 12
Com20020WakeOnRecon(HANDLE reCONEVENL)ceveeeeiiiieaeieiiiiiiieeee 12
Com20020ResetWakeONRECON(VOI)cceeeiiiiiiiiiiiiiiieeeee e 12
Com20020GetUSB220verflowTotal(long *packets , long *data) 12
Com20020GetUSB22FirmwareRevision(Short *rev)ooovveeeviiiieeeieneeeennn, 12
Com20020UsbVersion(SO *VErSION)cueeriianioiiiiiiiieiee e e e 12

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004

Overview

Contemporary Controls Null Stack Driver

Null Stack Driver Overview

Under Windows 2000/XP/Vista most networking drivers utilize the NDIS model or interface.
This arrangement is acceptable for applications that require standard protocols such as
TCP/IP, IPX/SPX or NetBEUI. In situations where custom protocols are used, in the NDIS
model, a custom protocol driver must be written. The NDIS model also separates the user
application from the hardware by several software layers. This can impact the networking
performance of an application.

In situations where custom protocols are used, a null stack driver is recommended. A null
stack driver simply allows the sending and receiving of raw packets over a network
interface device (AlI-USB, PCI20/22, AI-SRVR or USB22).

The Contemporary Controls Null Stack Driver provides several functions that allow the
sending and receiving of custom ARCNET packets. Also included are functions that
provide network status.

The ARCX.DLL and ARCX.LIB files are to be used with user applications written for the
Al-USB, PCI20/22, AI-SRVR or USB22.

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 3 OF 12

Provided Files

Along with the driver, a sample application is also provided in both source code and compiled
forms. The table below lists the provided files.

File Description

ARCX.DLL DLL containing functions for use with the AlI-USB, PCI20/22 and USB22

ARCX.LIB LIB file for resolving links within applications

ARCX.H Include file that defines how to interface to the DLL

TALK.EXE Win32 Sample driver application that allows ASCII messages to be
sent/received between two or more computers.

TALK.C C Source code file for Talk.exe sample application

TALK.RC Resource file for Talk.exe

TALK.DSP Project files for talk application

TALK.DSW

TALK.OPT TALK.NCB

RESOURCE.H Resource include file for Talk.exe

History

In the table below, the history of the driver is listed.

Item Version Date Comments

ARCX.DLL 2.1 12.03.03 | First release

ARCX.LIB 21 12.03.03 | First release

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 4 OF 12

References

[1] COMZ20022 Data Sheet, Standard Microsystems Corporation 1998

[2] ANSI/ATA 878.1-1999 Local Area Network: Token Bus ARCNET Trade Association
1999

Driver Operation

The intent of the driver is to provide a means to allow Win32 applications, written under
Windows 2000/XP/Vista, to send and receive ARCNET packets. There is a similar API
available for communicating with ISA/PCI and PCMCIA based cards; however, all
communications are handled via DeviceloControl functions.

ARCX.DLL provides functions that are called directly by the user's application to initialize
the AI-USB, PCI20/22 or USB22; check status; send and receive packets; and other tasks.

The descriptions below will describe the driver control codes in more detail. Each function
returns a value (0) or a non-zero integer that indicates failure.

As seen in the sample application the driver can be used in two modes. The first mode, or
non-event driven mode, allows the application to poll the driver for its status as to the
completion of a transmission or to check for received packets. This mode can be
demonstrated by commenting out the “EVENT_DRIVEN" compiler directive in the
example code. The other mode allows the application to put a thread to sleep when
waiting for a transmission to complete or while waiting for packets to be received. In the
example program this mode is demonstrated when the compiler directive
EVENT_DRIVEN is defined.

IMPORTANT NOTE: The file arcx.h contains several structures that are used to
communicate with the driver. These structures require a structure member alignment of 1
byte. A Visual C++ project normally defaults to a structure member alignment of 8 bytes. In
order to properly use these structures, either the project must be set to use a structure
member alignment of 1 byte or a pragma must be used. See arcx.h for an example of how
the pragma can be used.

ARCNET Considerations

Although the driver tries to abstract the network as much as possible, some understanding
of ARCNET must be attained to effectively utilize the driver.

ARCNET networks have many built-in features that other networks, such as Ethernet, do
not provide. When a node wishes to send a targeted packet to another node the
transmitting node first sends a “Free Buffer Inquiry”. The receiving node will respond with
its free buffer status. A NAK is used to indicate that the receiving node has no buffer space
available. This feature of ARCNET is used to eliminate overruns on the receiving node.
The transmitting node will continue trying to send its packet until it reaches the Excessive

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 5 OF 12

NAK limit (see Com20020Init()). When the Excessive NAK limit is reached the driver will
cease trying to transmit the packet and will communicate this to the application via the
Com20020Status() function. The WAKE_ON_TX COMPLETE event will also be set to
alert the application. The sending of Free Buffer Inquiries and NAKs are handled by the
COM20020.

When a packet has been properly received, the receiving node will send an
acknowledgement to the transmitting node. This is performed by the COM20020. The
driver will then provide this information to the application via the Com20020Status()
function. The bTransmissionComplete flag is used to indicate, to the transmitting node,
that the transmission is complete. The bTransmissionAcknowledged flag is used to
indicate that the packet has also been received correctly or incorrectly. The
bExcessiveNAKs flag is used to indicate that the transmission was cancelled due to
Excessive NAKSs.

If the driver tries to transmit to a non-existent node on a fully functioning network, the
transmission will timeout and the driver will respond with a bTransmissionComplete set
to true and the bTransmissionAcknowledged and bExcessiveNAKs flags set to false.
A fully functioning network is a network with two or more online nodes. If the driver tries to
transmit on a network where it is the only node online then the COM20020 cannot provide
any timeout status. If the transmission does not complete within a “set period of time”, the
Com20020CancelTX() function should be used to cancel the last transmission. Any
following Com20020Transmit() functions will return with an error indicating the inability to
transmit until the network contains two or more active nodes. The “set period of time” to
wait until canceling a transmission is dependent upon maximum number of nodes in the
network and the maximum number of bytes transmitted by each (see ANSI 878.1). A
worst case number which can be used is 840ms, when using a standard timeout (see
Com20020Init()). When using any other timeout, 1680ms can be used.

Hardware Considerations

Each device uses an SMSC COM20022 to interface to the ARCNET network. This chip
is backward compatible with the SMSC COM20020. The COM20022 provides an ability to
communicate over the ARCNET network at 10Mbps. For more information on the SMSC
COM20022 see the SMSC website (Www.smsc.com).

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 6 OF 12

www.smsc.com

Driver Control Codes/Functions

Com20020Init (COM20020_CONFIG *cfg, UCHAR device, UCHAR hardwareType)

This function initializes the Al-USB, PCI20/22, USB22 or AI-SRVR. See notes below for
special instructions on initializing a AI-SRVR.

COM20020_CONFIG parameters (not used for AI-SRVR):

uiCom20020BaselOAddress: This parameter is not used in the NT version of the
driver.

byCom?20020InterruptLevel: This parameter is not used in the NT version of the
driver.

byCom20020Timeout: This is used to indicate the type of extended timeout desired.

e STANDARD_TIMEOUT indicates a standard timeout (nhot an
extended timeout).

e QUAD TIMEOUT indicates four times the normal timeout

e EIGHT_TIMEOUT indicates eight times the normal timeout

e SIXTEEN_TIMEOUT indicates sixteen times the normal timeout
byCom20020NodelD: This is the node ID used by the driver.
bCom20020_128NAKs: This is the number of NAKs before a transmitted message
will stop being retried. A true value will stop the transmission after 128 NAKs. A false
value will end the transmission after 4 NAKs. The premature ending of a transmission

will be indicated in the Com20020Status() function.

bCom20020ReceiveAll: A true value will allow all network traffic to be received by
this ARCNET card.

byCom?20020ClockPrescaler: This controls the data rate of the Com20020 or
Com20022 device. The current available selections are:

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 7 OF 12

Selection Data Rate

0 2.5 Mbps
1 1.25 Mbps
2 625 kbps
3 312.5 kbps
4 156.25 kbps
5 5.0 Mbps
7 7.25 Mbps
10 10.0 Mbps

e bCom20020SlowArbitration: This is curently not used and should be set to false.

¢ bCom20020ReceiveBroadcasts: This controls the card’s ability to receive broadcast
messages. A true allows the card to receive broadcasts. A false causes the card not
to receive broadcast messages.

device is the instance of the AI-USB, PCI20/22 or USB22 in the system to which the
application will communicate. For example, if there are four Al-USB devices
connected to the computer the first detected Al-USB will have a deviceNumber of 0,
the second will be 1, the third 2 and the fourth 3. device is not used when
initializing a AI-SRVR.

hardwareTypeis ‘0’ for AI-USB or USB22, ‘1’ for PCI20/22, ‘2’ for AI-SRVR.

Return Value: (0) if the Com20020/20022 was properly initialized, or non-zero otherwise.

NOTE: When initializing a AI-SRVR, a pointer to a AISRVR_CONFIG structure must be
passed instead of a COM20020 structure. Since you are connecting to an already-
initialized AI-SRVR device, the regular initialization parameters are not used. Fill out the
hostname and port values for a AISRVR_CONFIG structure, and call the initialization
function as follows:

result = Com20020Init((COM20020_CONFIG *)&aisrvr_cfg ,
device _num , hardware_type);

To initialize a AI-SRVR, you may either use auto-detect, or you may supply a hostname
and optional port number. Auto-detect only works on when the AI-SRVR is attached to the
same subnet as the client computer. If the hostname value of the AISRVR_CONFIG
structure is ‘0", auto detect will be used. If the port number is ‘0", the default port 5001 will
be used. If you are able to connect to the AI-SRVR, Com20020Init() returns ‘0’, and the
rest of the AISRVR_CONFIG structure is filled out with data retrieved from the AI-SRVR.

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 8 OF 12

Com20020Transmit(COM20020_TRANSMIT_BUFFER *txbuf)

This function transmits a packet out onto the network. Upon a (0) return of this
function, the Com20020Status() function can be used to check completion of the
transmission.

COM20020_TRANSMIT_BUFFER parameters:

e byDestinationNodelD: This is the destination node ID for this message. To send a
broadcast message use a destination node ID of zero.

e uiNumberOfBytes: This is the number of bytes in the data buffer. This number must
be between 1 and 508. Also it cannot equal 254, 255 or 256 as these are exception
packet sizes and cannot be transmitted by the Com20020/20022.

o byDataBuffer[508]: This is the data to be transmitted in the packet. If system codes
are used in the message, the first byte (byDataBuffer[0]) will contain the message’s
system code.

Return Value: (0) if the packet was transmitted.
Com20020Exit(void)

This function will stop all activities of the driver. This function should be called before the
end of the application.

Return Value: (0)

Com20020Receive(COM20020_RECEIVE_BUFFER *rxbuf)
This function will either provide one received buffer or indicate that there are no receive
packets available. The current number of received packets are also indicated. After the
packet has been read by this function it is removed from the driver’s buffers.
COM20020_RECEIVE_BUFFER parameters:
¢ bySourceNodelD: This is the source ID of the received packet.
e byDestinationNodelD: This is the destination node ID of the received packet.
e uiNumberOfBytes: This is the number of data bytes in the received packet.

o hbyDataBuffer[508]: This is the received packet data bytes.

o dwNumberOfFilledBuffers: This is the number of received packets currently stored
by the driver. This number includes the packet provided in this structure.

Return Value: (0) if one packet has been provided in the output buffer;
non-zero if no packets are available.

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 9 OF 12

Com20020Status(COM20020_STATUS *status)

This function will provide the current status of the driver and COM20020/20022 device.

COM20020_STATUS parameters:

bReceiveActivity: This is an indication of traffic on the network. A true indicates there
is activity. A false indicates that either there is no activity or the Com20020/20022 is
not properly initialized.

bPowerOnReset: This is an indication of whether the device received a power on
reset. A true indicates that a power on reset has occurred. A false indicates that no
power on reset has occurred. This flag will remain true, after power up until a
CLEARPOR command has been sent to the device through the
Com20020Register() function.

bRecon: This flag indicates the presence of a RECON on the network. This flag is
automatically reset by the Com20020Status() command.

bToken: This flag indicates a token has been seen on the network sent by a node
other than this node.

byReceivedMessages: This is the number of received packets currently stored by
the driver.

bTransmissionComplete: This flag is an indication that the previously requested
transmission has been completed. In order to assess the proper completion of the
message the flag bTransmissionAcknowledged must also be inspected.

bTransmissionAcknowledged: This flag indicates the message was acknowledged
by the receiving node.

bExcessiveNAKs: This flag indicates that the last transmission was cancelled due to
an excessive number of NAKs received from the receiving node during the
transmission. This can be due to a misaddressed packet or a node that has turned off
its ability to receive packets.

dwReserved: This is currently not used.

Return Value: (0) if this function was successful, non-zero otherwise.

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 10 OF 12

Com20020Register(COM20020 REGISTER *req)

This function allows the modification of one of the Com20020/20022 registers or can be
used to read one Com20020/20022 register.

COM20020_REGISTER parameters:

e bWrite: This is used to indicate whether a write or read is being requested. A true
indicates a write is being requested and a false indicates a read.

e byRegister: This is the register addressed by this function. This can range from 0 to
7. Please refer to the Standard Microsystems Com20020 or Com20022 datasheet for
more information.

e byValue: If this is a write command then this is the value to be written into the
targeted register. If this function is being used to read from the device then this value
reflects the value of the register upon return.

Return Value: (0) if the function was successful, non-zero otherwise.
Com20020Cancel TX(void)

This function cancels the previously requested transmission. This is useful when a
transmission has been requested on a network with only one active node.

Input Buffer: None

Return Value: (0) if the function was successful, non-zero otherwise.
Com20020WakeOnReceive(HANDLE receiveEvent)

This function indicates to the driver that the application wishes to have its event set or
“woken” upon receipt of one or more packets. After the event has been set, the null stack
driver (version 1.4a) will reset the event and the application does not have to reset the
event as before.

Return Value: (0).
Com20020ResetWakeOnReceive(void)

This function indicates to the driver that the application no longer wishes to have its event
set or “woken” upon receipt of one or more packets. This function must be called before
the application is exited.

Return Value: (0).

Com20020WakeOnTXComplete(HANDLE transmitEvent)

This function indicates to the driver that the application wishes to have its event set or
“woken” upon the completion of a transmit operation. After the event has been set the
application must then reset its event in order to receive the next event.

Return Value: (0).

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 11 OF 12

Com20020ResetWakeOnTXComplete(void)

This function indicates to the driver that the application no longer wishes to have its event
set or “woken” upon the completion of a transmit operation. This function must be called
before the application is exited.

Return Value: (0).
Com20020WakeOnRecon(HANDLE reconEvent)

This function indicates to the driver that the application wishes to have its event set or
“woken” upon the occurrence of a reconfiguration operation. After the event has been set
the application must then reset its event in order to receive the next event.

Return Value: (0).

Com20020ResetWakeOnRecon(void)
This function indicates to the driver that the application no longer wishes to have its event
set or “woken” upon the occurrence of a reconfiguration operation. This function must be

called before the application is exited.

Return Value: (0).
Com20020GetUsB220verflowTotal(long *packets , long *data)
This function returns the number of packets and the total humber of bytes lost by the
USB22 due to overflow. If the PC does not retrieve data from the USB22 fast enough, the
USB22 internal buffer can overflow. When this happens, received packets are discarded
and a count is maintained of the number of discarded packets and of the total number of
bytes lost.
Return Value: (0) if successful, or non-zero if failed.
Com20020GetUsB22FirmwareRevision(short *rev)
This function returns the firmware revision number of the USB22. The major revision
number is contained in the upper 8 bits of the returned value, the minor number in the

lower 8 bits.

Return Value: (0) if successful, or non-zero if failed.

Com20020UsbVersion(short *version)

This function returns a number in 'version' which indicates whether the USB22 is attached
to a USB1.1 or USB2.0 port. The value of ‘version' will be 0x0011 for USB1.1, and
0x0022 for USB2.0.

Return Value: (0) if successful, or non-zero if failed.

CONTEMPORARY CONTROL SYSTEMS, INC. ARCNET DLL DRIVER VERSION 1.5 6/8/2004 PAGE 12 OF 12

	Cover
	Table of Contents
	Null Stack Driver Overview
	Provided Files
	History
	References
	Driver Operation
	ARCNET Considerations
	Hardware Considerations
	Driver Control Codes/Functions
	Com20020Init (COM20020_CONFIG *cfg, UCHAR device, UCHAR hardwareType)
	Com20020Transmit(COM20020_TRANSMIT_BUFFER *txbuf)
	Com20020Exit(void)
	Com20020Receive(COM20020_RECEIVE_BUFFER *rxbuf)
	Com20020Status(COM20020_STATUS *status)
	Com20020Register(COM20020_REGISTER *reg)
	Com20020CancelTX(void)
	Com20020WakeOnReceive(HANDLE receiveEvent)
	Com20020ResetWakeOnReceive(void)
	Com20020WakeOnTXComplete(HANDLE transmitEvent)
	Com20020ResetWakeOnTXComplete(void)
	Com20020WakeOnRecon(HANDLE reconEvent)
	Com20020ResetWakeOnRecon(void)
	Com20020GetUSB22OverflowTotal(long *packets , long *data)
	Com20020GetUSB22FirmwareRevision(short *rev)
	Com20020UsbVersion(short *version)

