Technical Document

Niagara™* Sedona Framework
Chopan Usage

November 9, 2011

wiagdra”

Sedona Framework Chopan Usage

Confidentiality Notice

The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation (“Tridium”). Such
information, and the software described herein, is furnished under a license agreement and may be used only in accordance with
that agreement.

The information contained in this document is provided solely for use by Tridium employees, licensees, and system owners; and,
except as permitted under the below copyright notice, is not to be released to, or reproduced for, anyone else.

While every effort has been made to assure the accuracy of this document, Tridium is not responsible for damages of any kind,
including without limitation consequential damages, arising from the application of the information contained herein. Information
and specifications published here are current as of the date of this publication and are subject to change without notice. The latest
product specifications can be found by contacting our corporate headquarters, Richmond, Virginia.

Trademark Notice

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Conditioning Engineers.
Microsoft, Excel, Internet Explorer, Windows, Windows Vista, Windows Server, and Visio are registered trademarks of Microsoft
Corporation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Mozilla and Firefox are registered trademarks
of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation.
Tridium, JACE, Niagara Framework, Nia\garaAX Framework, and Sedona Framework are registered trademarks, and Workbench,
WorkPlace*X, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services mentioned in this publi-
cation that is known to be trademarks, registered trademarks, or service marks are the property of their respective owners.

Copyright and Patent Notice

This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those
products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from
Tridium, Inc.

Copyright © 2011 Tridium, Inc.

All rights reserved. The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

CONTENTS

[=) - Lo =2 111

Aboutthisdocumentoiitiiiiiiiiiieeiiieeeieneesseeecsnscesnsscsnsees iiii
Chopan FAQSvvvtrerrreeeeeesessssssssssssssesssssssssssnsssssssnssnnnns iii
Chopan usage in Sedona Frameworktermscoeeeeeeeereerrsssssnnscnnns iv
Documentchangelogcoviiiieiiiiiinieereeesnsseensseeesssnnnnssacns v

Chopan software and hardware requirementsccceveveeeeceaeess 1-1

Licensing, module, and kit requirementsc.iiiiiiiiiiiiiiiieiene 1-1

Sedona Framework Chopan QuickStartcccciiivieeecnecnnccnees 2-1

Setting UPp ChoPan SerVersovveereeeeeeesessssssssssssscccssssssssssans 2-2
Setting up Jennic-based devices as Chopanserversc..coiiiiiiiiiiiiiiiinn... 2-2

Add chopan kit to Jennic-based device i 2-2

Add Chopan server COMPORENES tO APD . .. oo v vttt et ettt eaea 2-2

Setting up NiagaraAX asa Chopan servercuiiiiui i, 2-3
Verify station’s CHOPAN SErverouuuuuueui it 2-3
Understand/set Chopan authorizationccoiiiiiiiiiiiiiiiiiininin... 2-4

Setting up a Jennic-based device as a Chopanclientcouaee. 2-4
Recommended “Best Practices” for NiagaraAX Chopan client integration 2-4
Client side Chopan procedures for a Jennic-based deviceccooviiiiiiinn... 2-5

Add core Chopan client componentsS L0 APpovvvuie et 2-5

Chopan Device Manager qUIiCk SEATEoouuiuiiui ittt 2-6

Chopan Point Manager qUick SEATEoouuuiu ittt 2-7

About Chopaninthe SedonaFrameworkccoiiiiiiiecnecneceness 3-1

Chopan compared toOSOXvvvvrrrreeeersesessssssssssssscccasssssssnsnns 3-2
Proxy pointusage of Chopanccieiiuieiineeeinsresenscosnsscsnnscnns 3-2
Workbench engineering of Chopan clientpointsccoieiiiiieiianns. 3-3
Peer-to-peer configuration eXampleoouiiiiiiiiiiiiii i i 3-4
Chopan Point Managernotesccceeiiiiiiienereeeceienenccesccnnenes 3-5
Data and pointtypesinChopancciiiiiiiiiireeeeieeessssssssssnnns 3-5
ChopFItWr COV INCrEMENT ..ttt e e ettt ettt e e eaeaenenans 3-6
Service Pin SUPPOIt ...iiierriiieeroeeseesssesssesssssssssssssssssssssassnns 3-6
Y= V] el o] 1§ 1= (U e R PP 3-7
Chopanauthorizationcciiiiiiiiiiiiiiiiiesssescesscesssssssssssass 3-8
Maintenance Modecoieeiiiiiiiiieeeeiieeeieseesescsssnsccsnssssnnsses 3-8
Chopan Diagnosticsvvieettiiiiiiiieiiieeeiieeneeeteceseeennssssccnnnnns 3-10
NiagaraAX DiagnoStiC OUTPUL e vttt ettt ettt e e eneaens 3-10
Sedona Framework Diagnostic OUtPULc.vueniuii e 3-11

NiagaraAX

Sedona Framework Chopan Usage

Contents

November 9, 2011

NiagaraAX

Sedona Framework Chopan Usage

PREFACE

Preface

This document explains the usage of CHoPAN (Compressed HTTP over Personal Area Network), an
available protocol in the Sedona Framework TXS (Sedona Framework 1.1). For ease of reading, and also
to match various component and view names in the NiagaraAX and Sedona Frameworks, “Chopan”
replaces CHoPAN in many areas of this document.

Currently, Chopan applies only to wireless (Jennic-based) Sedona Framework devices networked using a
QNX-based JACE-2, -6, -7 or JACE-x02 XPR controller with an installed “Sedona Jennic” option card.

This preface has the following sections:

+ About this document

+ Chopan FAQs

+ Chopan usage in Sedona Framework terms
+ Document change log

About this document

As noted earlier in this Preface, this document applies to the usage of Chopan in the Sedona Framework
TXS 1.1 and later, and has the following main sections:

+ Chopan software and hardware requirements
Explains the NiagaraAX and Sedona Framework platform, software, and licensing requirements.
+ Sedona Framework Chopan Quick Start
Provides several step-by-step procedures for getting started with using Chopan.
+ About Chopan in the Sedona Framework
Provides background on why CHoPAN is used, with additional Chopan-related topics that apply to
Jennic-based devices, including the engineering of them using NiagaraAX Workbench.

Chopan FAQs

Below are some frequently asked questions (FAQs) about Chopan usage with Sedona Framework devices.

Q: What is Chopan?
A: Chopan is a Tridium-developed protocol running over UDP/IP that is specifically designed to allow
peer-to-peer data sharing between 802.15.4 wireless devices and/or a JACE controller.

Q: Why use Chopan?

A: For point value updates, Chopan provides bandwidth efficiencies over Sox in wireless (Jennic-based)
networks of devices, which have notably less bandwidth than networks of Ethernet- and/or WiFi-
equipped Sedona Framework devices. Chopan is also the only way that Jennic-based devices can
directly share data, peer-to-peer. Further, if a Jennic-based device is configured to “hibernate”
(noting Sedona Framework support for this is not widely available now), client “Chopan point” usage
is required for point value updates in the NiagaraAX station—instead of Sedona proxy points. Such
devices also use Chopan for other routines, such as “Maintenance Mode”.

Q: Why not use Chopan?

A: While using a Chopan tuning policy for Sedona Network proxy points is similar to using Sox, using
the client interface for Sedona devices involves configuration interfaces that may be abstract and
unfamiliar to those familiar with NiagaraAX drivers. Chopan does not use authenticated sessions
and is less secure than the Sox protocol.

NiagaraAX iii

Sedona Framework Chopan Usage

November 9, 2011

Q: Is there an “easy way” to benefit from Chopan if I don’t have hibernating devices or don’t need to

have devices share data directly, peer-to-peer?

A: Yes: simply configure Jennic-based devices as Chopan servers. Then in the JACE station, for Sedona
proxy points for those devices, specify tuning policies that use the “Comm Type” of “Chopan”.
No Chopan client configuration of devices is required.

Q: How does Chopan compare to Sedona Framework 1.0?

A: Sedona Framework 1.0 uses Sox protocol for all communications. The JACE can poll or subscribe to
data within a Sedona Framework device, but all data sharing must go through the JACE.

The Sox protocol is designed around an authenticated session between a client and server. Each con-
nection requires multiple messages to set up and tear down and dedicated resources to maintain.
This makes it unsuitable for general data sharing between devices.

Q: Does peer-to peer mean I don’t need a JACE?

A: Every network of Jennic-based devices still requires a coordinator. This is an 802.15.4 networking
requirement. At this point, the only coordinators offered for deployment are the “Sedona Jennic”
option card running in a JACE, or the USB Jennic adapter (coordinator) for the Sedona Framework.

Note that the USB coordinator is intended for use in a developer scenario only, from Workbench to
a single Sedona Framework device. There are no plans to support it as the coordinator to a “network
of devices”—for example using it with a AX SoftJACE or Windows-based JACE environment.

Chopan usage in Sedona Framework terms

The following is a list of terms and abbreviations used in this document when describing Chopan usage
in the Sedona Framework. For other Sedona Framework terms, see “Sedona Terms” in the NiagaraAX
Sedona Networks Guide. For general NiagaraAX terms, see the Glossary in the User Guide. Note that this
glossary may grow over time, or may simply be eliminated.

6LoWPAN Acronym for IPv6 over Low power Wireless Personal Area Networks. It is an international
open standard that enables using 802.15.4 and IP together. The Sedona Framework was created with
6LoWPAN networking capability in mind, reflected in its DASP and Sox protocols.

app The app in a Sedona Framework device is its application of Sedona Framework components and
services, including links between them, and all configuration properties. Components and services are se-
lected from kits installed in the device.

Chopan Or CHoPAN, for Compressed HTTP over Personal Area Networks. It is a Tridium proprietary
protocol used in Sedona TXS to support Jennic-based devices, particularly any hibernating device. Cho-
pan runs over UDP/IP and is a “session-less” protocol (unlike Sox), offering a number of advantages over
Sox in certain applications. Chopan usage involves different components and views in the NiagaraAX and
Sedona Frameworks, and is the subject of this document.

ChopanService The component in the Jennic-based device’s app that provides communication capa-
bility over CHoPAN. By convention, it is located in the app’s “service” folder.

ChopanServlet The component in the Jennic-based device’s app that handles incoming CHoPAN
point reads and writes (server-side functionality). By convention, it is a child of the ChopanService com-
ponent.

Note that equivalent functionality in the JACE station is provided by the ChopanServer child of the sta-
tion’s SedonaJen6lpNetwork component.

ChopanNetwork The top level component in the Jennic-based device’s app that can initiate reads and

writes (client-side functionary). By convention, it is located in the app’s “service” folder. It can contain
child ChopanDevice components.

ChopanDevice A component in the Jennic-based device’s app that is a proxy representation of a re-
mote CHoPAN server device, providing addressing information. It can contain child Chopan point com-
ponents. The device may represent another Jennic-based device or the JACE controller (coordinator).

Chopan point A component in the Jennic-based device’s app acting as Chopan proxy point, either of
type ChoBoolPt, ChoBoolWr, ChoFItPt, ChoFItWr. You link these points to other components in
the device’s app to share data.

coordinator In a network of Jennic-based devices, the JACE station acts as the single “coordinator”
node for all child nodes, using the Sedona Jennic option card installed in that JACE. The coordinator

NiagaraAX

Sedona Framework Chopan Usage

Chapter -

November 9, 2011

Document change

NiagaraAX

maintains info about its child nodes, each of which may provide routing functionality or be end devices.
Properties of the station’s SedonaJen6lpNetwork configure the coordinator’s operating parameters.

DASP For Datagram Authenticated Session Protocol. This is the low-level, secure session-based proto-
col that Sox utilizes. DASP operates in networks that include 6LoWPAN and resource-limited devices.
Sedona network and device components in NiagaraAX provide debug properties that allow examining
DASP and Sox messaging.

hibernating device Refers to a type of Jennic-based device that “hibernates” (sleeps) the majority of
time, periodically “waking up” for short periods to execute routines and exchange data with other devices.
Typically, such a device is powered by an onboard battery or batteries. Such devices require configuration
using CHoPAN (Chopan).

At the time of this document, Sedona Framework support for hibernating devices is not widely available.
However, the SedonaJen6lpNetwork driver in the NiagaraAX station is “ready” for such device support.
This is also noted in other sections of this document that reference “hibernating devices”.

Jennic-based A Jennic-based device is the term used in Tridium tech docs for a wireless Sedona
Framework device based on a Jennic micro-controller, with built-in 802.15.4 connectivity and 6LoWPAN
stack support. Such devices are modeled as “SedonaJen6lpDevices” in the NiagaraAX station of a JACE
controller (with an installed “Sedona Jennic” option card), under a SedonaJen6lpNetwork.

Note other Jennic-based devices exist that do not use the Sedona Framework application layer. Currently
no Tridium products or tech docs apply to those “non-Sedona Framework” Jennic-based devices.

JenNet The Jennic protocol that manages wireless 802.15.4 network formation and message routing,
sitting above the 802.15.4 layer and below the 6LoWPAN layer. JenNet provides a “self healing tree” net-
work. In a SedonaJen6lpNetwork, the JACE station is always the top “coordinator” node of the network
tree.

kit Sedona kits are the basic unit of modularity of Sedona software, encapsulating code, types, and meta-
data. A kit is analogous to a module on a NiagaraAX platform. The app in a Sedona Framework device
instantiates components and services contained in its installed kits. You must have the appropriate kits
available on your Workbench platform to change a device’s “core” software. Sedona Sox Tools in Work-
bench include a “Kit Manager” view to manage kits on a Sedona device.

PAN Personal Area Network, a generic term for a device network that is typically limited to a small area.

Sedona Framework device A Sedona Framework device (or “Sedona device”) is Sedona Framework
Certified, and runs a Sedona app in a Sedona VM (virtual machine), using installed Sedona kits, and is
configured in Workbench using a Sox connection. Devices may vary in a number of ways, including de-
vice connectivity—for example Ethernet/IP, WiFi, or 802.15.4 (wireless PAN). Currently, Chopan applies
only to wireless Jennic-based devices.

Sox Sox is the standard protocol used to communicate with Sedona Framework devices. It runs over
UDP via the lower-level DASP protocol. Workbench always uses Sox to connect to (open) a Sedona
Framework device, and to do initial configuration. A Niagara station also uses Sox to discover, and if so
configured, to read and write to Sedona proxy points. However, if a Jennic-based device is configured with
Chopan as a Chopan server, that comm type can be used for proxy point updates.

WPAN Wireless Personal Area Network, a PAN (personal area network) using a wireless technology.

log
Updates (changes/additions) to this Sedona Framework Chopan Usage document are listed below.

« Published: November 9, 2011
Initial document.

Sedona Framework Chopan Usage

Chapter -

November 9, 2011

NiagaraAX

Sedona Framework Chopan Usage

Note:

CHAPTER

Chopan software and hardware requirements

At the time of this document, Chopan support for Sedona Framework devices applies only to wireless
(Jennic-based) devices integrated into NiagaraAX, under a SedonaJen6lpNetwork in a JACE station.

Chopan is not available in Ethernet or WiFi-equipped Sedona Framework devices, which can be integrated
into a NiagaraAX station under a SedonaNetwork.

The following software and hardware items are required:

B NiagaraAX Workbench AX-3.6 or later, enabled for Sedona Framework TXS 1.1 via the Sedona In-
staller tool. This provides the Workbench engineering environment needed for Chopan.

« AJACE-2, -6, -7 series or JACE-x02 XPR controller (with a wireless Sedona Jennic option card) as
the NiagaraAX host platform, running AX-3.6 or later. The JACE acts as the network “coordinator”
for the job’s wireless Jennic-based devices. Its station models these devices in the
SedonaJen6lpNetwork.

+ One or more wireless Jennic-based devices (Sedona Framework device based on a Jennic microcon-
troller), with the necessary Sedona kits installed in each to support Chopan.

Licensing, module, and kit requirements

Note:

NiagaraAX

Before upgrading a JACE from a previous revision, or before installing software modules in a JACE, use the
Workbench “Sedona Installer” tool to install the latest Sedona TXS 1.1 bundle for Workbench, and restart
Workbench. This ensures the latest Sedona-related modules are available in Workbench for installation in
remote JACE controllers. For details, see the NiagaraAX Sedona Installer Guide document.

That document also includes a complete summary of Sedona licensing in NiagaraAX.

+ The SedonaJen6lpNetwork requires the JACE host to have the sedonanet, nsedona, jen6lp, and
platjen6lp modules installed, and its license to have the jen61p feature. Device and/or proxy point
limits may exist. See the NiagaraAX Sedona Networks Guide for more details.

+ Ifthe JACE host is to act as a Chopan server to networked Jennic-based devices (typical), its jen61p
feature must include the attribute entry: export=""true”

« Thelicense in the JACE host also requires the tunneling feature with the attribute sox=""true”,
to allow Sox connections to Jennic-based devices.

Apart from installing the 3.6.11 version of the Niagara distribution in the JACE, make sure to install the

modules noted above, plus any others needed for other drivers or features. Upgrade any modules shown

as “out of date”. For details, see “Software Manager” in the Platform Guide.

1-1

Sedona Framework Chopan Usage

Licensing, module, and kit requirements Chapter 1 - Chopan software and hardware requirements
November 9, 2011

NiagaraAX

1-2

Sedona Framework Chopan Usage

CHAPTER

Sedona Framework Chopan Quick Start

This section provides procedures to start using Chopan in a network of wireless Jennic-based devices.
Configuration requires a NiagaraAX Workbench (Fox) connection to the JACE station with an existing
SedonaJen6lpNetwork, configured to communicate with child SedonaJen6lpDevices. Some procedures
require a (tunneled) Sox connection to one or more of those devices modeled in that network.

Note: Seethe “Sedona Network Quick Start” section in the NiagaraAX Sedona Network Guide for related details.
Below are the Chopan-related topics and procedures included in this section:

+ “Setting up Chopan servers” on page 2-2
+ “Setting up Jennic-based devices as Chopan servers” on page 2-2
— “Add chopan kit to Jennic-based device” on page 2-2
— “Add Chopan server components to App” on page 2-2
+ “Setting up NiagaraAX as a Chopan server” on page 2-3
“Verify station’s Chopan Server” on page 2-3
“Understand/set Chopan authorization” on page 2-4

+ “Setting up a Jennic-based device as a Chopan client” on page 2-4
+ “Recommended “Best Practices” for NiagaraAX Chopan client integration” on page 2-4
+ “Client side Chopan procedures for a Jennic-based device” on page 2-5

“Add core Chopan client components to App” on page 2-5
— “Chopan Device Manager quick start” on page 2-6
“Chopan Point Manager quick start” on page 2-7

Niagara™ 2-1
Sedona Framework Chopan Usage

Setting up Chopan servers

Chapter 2 - Sedona Framework Chopan Quick Start

Setting up Jennic-based devices as Chopan servers November 9, 2011

Setting up Chopan servers

Note:

Step 1
Step 2

Step 3

Note:

Step 4

Note:
Step 5

Step 1
Step 2

Step 3

Setting up Jennic-based devices as Chopan servers

Any non-hibernating, networked, Jennic-based device can operate as a CHoPAN server. This lets its app
respond to read and write CHoPAN client requests from the JACE, and/or from other networked Jennic-
based devices.

Server functionality for a device includes support for Sedona proxy points, to allow the most efficient tuning
policy “Comm Type” (Chopan)—even if not otherwise making Chopan point requests to it.

+ Add chopan kit to Jennic-based device
+ Add Chopan server components to App

Add chopan kit to Jennic-based device
With the JACE station open in NiagaraAX Workbench:

In the Nav tree, expand the SedonaJen6 I pNetwork to reveal the child SedonaJen6lpDevices.
Right-click a device, and select <l Open Sox - Tunnel Session.

An Authentication dialog appears for the Sox connection.

Enter the Username and password of a User in the Sedona app’s UserService (for example: the frozen
admin user), and click OK. A Sox connection is made tunneling through the running station.

The view space shows the Sedona device’s Nav Container View, with £ Tools and B App nodes.

If the connection fails, it may be because your Workbench host does not have the necessary manifest files
for all the kits installed in the Sedona device. In the error, examine any “Details” link to see if missing
mapnifests are named. For related details, refer to Sedona Manifest Manager - Engineering Notes.

Another possible issue might be a user mismatch between the app’s users service and your station login. As
a workaround, in the JACE station’s SoxTunnel service (Config > Services > SoxTunnel), set the “Authen-
ticate with User Service” property to false and Save.

The tunneled Sox connection also appears in the Nav tree root of the JACE (on parity with the station).
You can also work from the Nav tree, expanding and right-clicking, etc. as needed.

Add the chopan kit to the device (if not already present) using the Kit Manager.

To do this, expand the tunneled €l Sox connection to select & Tools and double-click on the # Kit
Manager to access the Kit Manager wizard. If the chopan kit is already present (and up-to-date), skip
ahead to another procedure, such as “Add Chopan server components to App”.

Otherwise, install/upgrade the chopan kit and select Restart when the wizard completes. This drops
the Sox connection, and the connection becomes “ghosted” in the Workbench Nav tree.

For complete details, see “About the Kit Manager” in the Sedona Framework Sox Tools Guide.

In the Nav tree, double-click the ghosted i Sox connection for the device, to reopen it in Workbench.

Add Chopan server components to App

If the Sedona Framework device has the chopan kit installed, you can configure it as a Chopan server. See
the previous procedure “Add chopan kit to Jennic-based device”.
Using NiagaraAX Workbench, open a tunneled €l Sox connection to the device.

From the device's Nav Container View, double-click the B App node, for its Sedona Property
Sheet view, and expand its service container (folder).

Open the M Sedona Palette in the Workbench sidebar, and choose the & chopan palette.

NiagaraAX

Sedona Framework Chopan Usage

Chapter 2 - Sedona Framework Chopan Quick Start Setting up Chopan servers

November 9, 2011

NiagaraAX

Note:
Step 4
Note:

Step 5

Note:

Step 1
Step 2

Setting up NiagaraAX as a Chopan server

Figure 2-1 Chopan components required for server operation (recommended hierarchy shown)

[CIl

=| £7 service sysiFolder [service:1]
ﬂ | 3 Meta Group [1] >
+ #49 History # E plat jennic: : JennicRouter [plat:2]
= %]E Sedona (T2074HP-10):/173 | @? S0% soxSoxService [sox:3]
2 g Tools # B users sysiUserService [users:4] |

« E'Em

@? Scansy t2074§::SensorScanService [ScanSvia]
= @? ChopanS chopan::ChopanService [Chopans:7]

+ ™ Sedona Palette

I[j T m :) Meta Group [1] 3>

@ ChoBoolFt [76 E] 5| #) Port [tero Jro-essas] =
W choBoalwr [76 B] | () Diags C{Radix=16 [0-ff]

@ ChoFltPt [76] #| () Chosvlt chopan::ChopanServiet [ChoSvl:s]

B ChoFitwir [34 €] | @? PanInfo paninfo::PaninfoService [Paninfo:9]

L Gepenibn e (12 + G Beat £2074i: sHeartBeat Service [Beat:11]

R ChopanMetwork [292 B]

HEmw systiFolder [10:12] 5
[0 Chaparberet (7661 | l I ' D]
(E SrvcPinTrig [40 B] | Refresh || Save |

From the chopan palette:
1. Addthe €8 ChopanService to the service folder of the App (if the ChopanService is not already
present in the App). By default, the component’s name is trimmed to “ChopanS$”.

2. Addthe @ ChopanServlet under the & ChopanService (again, if not already present). By
default, the component’s name is trimmed to “ChoSvlt”.

This component hierarchy (App > service > ChopanS > ChoSvit) is the recommended convention.
If using default Chopan ports (1810), no further configuration is needed.

If specifying a non-default Port in the property sheet of the ChopanService, remember a matching port
number must be used later when configuring any client-side ChopanDev i ce that represents this device.

Save the App (right-click the B App node and select Actions > Save).
The device will now support Chopan client requests from remote devices.

Sometimes, you may need to enable a device to make its own Chopan client requests, say if requesting
data directly from another Jennic-based device. If so, see “Add core Chopan client components to App”.

Setting up NiagaraAX as a Chopan server

The main use case for the station to operate as a Chopan server is to support client Chopan client requests
[from networked hibernating devices—which at the time of this document are not widely available. Until
full support for hibernating devices is in place, consider this section more “informational” than practical.

The JACE station running the SedonaJen6lpNetwork can operate as a CHoPAN server, providing it is
properly licensed (license feature jen61p must have attribute export=""true). This lets the station
respond to CHoPAN client read and write requests from networked Jennic-based devices.

+ Verify station’s Chopan Server
+ Understand/set Chopan authorization

Verify station’s Chopan Server
With the JACE station open in NiagaraAX Workbench:

Open the property sheet of the SedonaJen6 IpNetwork, if not already open.

Expand the Chopan Server container to verify the software POrt number (1810 is default), the server
is Enabled (true, also default), and the Status is ok.

You can specify another “non-default” Port number; however, you will need to specify this same port in
the client-side ChopanDev i ce component that represents the JACE, when configuring the Sedona app
in any networked Jennic-based device.

Debug output to the station’s Application Director is available, but disabled by default.

2-3

Sedona Framework Chopan Usage

Setting up a Jennic-based device as a Chopan client

Chapter 2 - Sedona Framework Chopan Quick Start

Recommended “Best Practices” for NiagaraAX Chopan client integration November 9, 2011

Step 1

Note:

Step 2

Note:

Understand/set Chopan authorization

With the JACE station open in NiagaraAX Workbench, after enabling the network’s Chopan Server:

In the Nav tree, expand the station’s Config node to reveal Services and UserService, and
double-click the UserService for the UserManager view.

Find the User named CHoPAN. This user is automatically created, with no permissions assigned by default.

The station automatically allows Sedona reads of any appropriate component, but writes to station
components are checked for authorization (as part of this CHoPAN user scheme). This is necessary because
CHoPAN is an unauthenticated protocol, meaning that CHoPAN servers do not authenticate or prevent
and reads or writes to local components.

As necessary, assign permissions to user CHoPAN, selecting categories and whatever level write (W)
privileges may be needed.

Any incoming request that results in a modification of the station database will be checked against the
permissions given to this User. In order for the station to accept a write from CHoPAN, the component
being written must be assigned to a category for which the CHoPAN User has write privileges.

Ifyou are familiar with the NiagaraAX BACnet export authentication scheme (via a User named BACnet),
please note that this is the identical model.

For related details, see “Chopan authorization” on page 3-8.

Setting up a Jennic-based device as a Chopan client

Note:

Any networked Jennic-based device can operate as a Chopan client. This lets its app initiate read and
write client CHoPAN requests directly from the Chopan server in other networked Jennic-based devices,
or from the Chopan server of the JACE. If a hibernating device, Chopan client configuration is required,
but is otherwise optional.

At the time of this document, Sedona Framework support for hibernating devices (typically battery
powered devices) is not widely available. However, the Sedonajen6lpNetwork driver in the NiagaraAX
station is “ready” for such device support if this changes.

The device requires the chopan kit installed, if not already present. For a quick start procedure, see “Add
chopan kit to Jennic-based device” on page 2-2.

These sections apply to Chopan client configuration, and are best understood before beginning setup:

+ “Recommended “Best Practices” for NiagaraAX Chopan client integration” on page 2-4
+ “Client side Chopan procedures for a Jennic-based device” on page 2-5

¢ “Add core Chopan client components to App” on page 2-5

+ “Chopan Device Manager quick start” on page 2-6

+ “Chopan Point Manager quick start” on page 2-7

Recommended “Best Practices” for NiagaraAX Chopan client integration

If making use of the Chopan server in the JACE station, allowing one or more Jennic-based devices to
make Chopan read or write client requests to NiagaraAX, some best practices are recommended. These
practices include:

1. Before adding Chopan points in a device (typically using the “Chopan Virtual gateway” under a
SedonaJené6lpDevice in the JACE's station), copy “ChopanTargetPoints” from the NiagaraAX
Jen61p palette into a folder you created under that device component. For example, create a folder
named “ChopanPts” under the device, at the same level with “Points’, “Parent Pan Info’, and so on.
Two ChopanTargetPoint types are in jen61p palette: ChoBool Target and ChoFItTarget.
Each is a conveniently “trimmed” standard BooleanWritable or NumericWritable component, with
all actions and all inputs but “in10” hidden.

+ Ifreading (pulling) the value from the station, the client request is to the “out” property of this
component. The “in10” property is linked in the station to another source component.

o Ifwriting (pushing) the value from the app, the client request is to the “in10” property of this
component. The “out” property is linked in the station to another target component.

2. Copy one ChopanTargetPoint for each data item you are writing (from app to station) or reading
(from station to app) into that folder.

3. Rename each ChopanTargetPoint to something descriptive, yet compact—as each will be a “target”
for a Chopan point created in the Sedona app, with default names truncated at 7 characters. For
example, if adding a ChoFltTarget to hold the out value of a NumericShedule in the station, used for
a temperature cooling setpoint, then a name of “ClgSP_S” would help make this clear.

NiagaraAX

Sedona Framework Chopan Usage

Setting up a Jennic-based device as a Chopan client
Client side Chopan procedures for a Jennic-based device

Chapter 2 - Sedona Framework Chopan Quick Start
November 9, 2011

Client side Chopan procedures for a Jennic-based device

The following procedures apply when setting up a Jennic-based device as a Chopan client:

+ Add core Chopan client components to App
+ Chopan Device Manager quick start
+ Chopan Point Manager quick start

Add core Chopan client components to App

If the Jennic-based device has the chopan kit installed, you can configure it with the necessary core
Chopan client components.

Using NiagaraAX Workbench, open a tunneled <l Sox connection to the device, if not already open.
From the device’s Nav Container View, double-click the B App node, for its Sedona Property

Step 1
Step 2

Step 3

Sheet view, and expand its service container (folder).
Open the M Sedona Palette in the Workbench sidebar, and choose the O chopan palette.

Figure 2-2

+ #49 History

= @ Sedona (T2074HP-10):/174

I {7 chopan

Chopan components required for client operation

@ ChoBoalPt [76 EB]

B choBoalwr [76 B]

@ choFlpt [76 B)

[choFlewr [34 B]

[ChopanDevice [112 B]

S ChopanMetwork [292 B] | — 42—
&% ChopanService [308 B]

(0} ChopanServiet [45 B]

_|) Scan Period
_| 2 Guard Time

_| {3 Time To Skeady State

_| {7 Hibernation Resets Steady State

=| £ service

|) Meta

+ = plat

E| @? S0

9 users

E| @? SCansy

£ @? Chopans
/ | @? Panlnfo

+ P Beat
>+ €py Chopanl
H]

[© fae [~

sysiFolder [service:1]

Group [1] 3>

jennic: : JennicRouter [plat:2]

sk SoxService [sox3]

sysiUserService [users:4]

t2074§::SensorScanService [ScanSvia]

chopan::Chopanservice [Chopans: 7]

paninfo::PaninfoService [Paninfo:9]

t2074j;:HeartBeatService [Beat:11]

chopan: : Chopanietwork [Chopani:25]
sysiFolder [10:12]

11

1|

L

B SrvePinTrig [40 B]

Save |

| Refresh ||

From the chopan palette:

1. Addthe € ChopanService to the service folder of the app (if the ChopanService is not already
present in the app). By default, the component’s name is trimmed to “Chopan§”.

2. Add the @ ChopanNetwork to the service folder of the app (if the ChopanNetwork is not
already present in the app). By default, the component’s name is trimmed to “ChopanN".
Note: This component hierarchy (App > service > ChopansS, and App > service > ChopanN is the
recommended convention.

Save the app (right-click the B App node and select Actions > Save).

The device will now support Chopan client configuration from the NiagaraAX station running on the
JACE, via the “Chopan Virtual gateway” under its corresponding SedonaJen6lpDevice component.

Step 4

Under the ChopanNetwork, add one or more ChopanDev i ces with child Chopan points to configure
data reads and writes.

Step 5

+ The recommended method is to use the views under the “Chopan Virtual gateway” of the
SedonaJen6lpDevice in the JACE's station, meaning the Chopan Device Manager and
then Chopan Point Manager. Both views provide “Discovery” to simplify the selection of items.
This creates the appropriate Sedona components in the app of the represented device, under its
ChopanNetwork component. See “Chopan Device Manager quick start” on page 2-6 and “Chopan
Point Manager quick start” on page 2-7.

+ Alternatively, it is possible to add ChopanDev i ce and Chopan points (ChoBoo1Pt, ChoBooIWr,
ChoFI1tPt, ChoFItWr) directly in the device’s Sedona Framework app, copying them from the
chopan Sedona Palette, and locating them under the ChopanNetwork. However, proper slot ad-
dressing (device and URI) is typically difficult.

NiagaraAX

2-5

Sedona Framework Chopan Usage

Setting up a Jennic-based device as a Chopan client Chapter 2 - Sedona Framework Chopan Quick Start

Client side Chopan procedures for a Jennic-based device November 9, 2011

Step 1
Step 2
Note:

Step 3

Step 4
Note:

Step 5

2-6

Chopan Device Manager quick start

Providing the Jennic-based device’s app has core Chopan client components (see “Add core Chopan client
components to App” on page 2-5), you can use the Chopan Device Manager in the device’s “Chopan
Virtual gateway” to add device-level Chopan client components. This method employs a Sox connection
to the device.

With the JACE station open in NiagaraAX Workbench:
In the Nav tree, expand the SedonaJen6 I pNetwork to reveal the child SedonaJen6lpDevices.
In the Nav tree, expand a device to see its extensions like & Points and & Chopan Virtual.

(Possible future support) If a hibernating device, first invoke the right-click action on the device: Mainte-
nance Mode, and wait for the “mode active” popup in Workbench before doing the rest of this procedure.
Be aware that after accessing the Chopan Virtual gateway for a hibernating device, that the device will
remain in Maintenance Mode as long as the Nav tree for the Chopan Virtual gateway is open.

Double-click the & Chopan Virtual gateway.
Its property sheet shows a @ ChopanN (Virtual Chopan Network).
Click the %@ ChopanN component.

You must click or double-click components under a Virtual Chopan Network, as opposed to using the
expand (+) control beside components. This is a “virtual component” characteristic.

Figure 2-3 Chopan Device Manager view on the ChopanNetwork virtual component

Ca Virkual {Chopan Rook)
| 3 Faul: |
=g CﬁanN Yirtual Chopan Netwark

4 chopan Virtual & Chopanl

Mame |Address |Chopan Port B
4 Chopan Devices 0 objects
Name |Address |Chopan Port [l

The view changes to the Chopan Device Manager, which will initially be blank. Any devices previ-
ously added will be listed.

Click the 82 Discover button.
A “Learn Chopan Servers” job runs, and the view splits in learn mode (top pane lists discovered devices).

Figure 2-4 Example Chopan Device Manager view after discovery

& chopan Yirtual % Chopant &0 Chopan Device Manager -

| ° “Q Learn Chopan Servers Success ¥ m |
Discovered Chopan Device obje

Name Address Chopan Por{@

[E_‘Wing_SedI0s FesD:0000:0000:0000:0215:5400:000f:86b1 1510
[Shed_Hiberntg feg0:0000:0000:0000:0215:58d00:0009:b017 1510
[Lobby_SedI4HP FesD:0000:0000:0000:0215:5400:0011:7ef4 1510
[sedDevBoard fed0:0000:0000:0000:0215:8d00:000e:66fc 1810

[5edls 5 6lPa 192.168.1.36 1510
Chopan Devices 0 objects
MName |Address |Chopan Port B

+ Sedona devices are listed by the name of the corresponding SedonaJen6lpDevice in the station, and
show their unique 64-bit IPv6 address.
+ TheJACE (if enabled as a Chopan server) is listed by its station name, and shows its IPv4 address.

Discovered Chopan Devices appear as follows:

NiagaraAX

Sedona Framework Chopan Usage

Chapter 2 - Sedona Framework Chopan Quick Start Setting up a Jennic-based device as a Chopan client
November 9, 2011 Client side Chopan procedures for a Jennic-based device

Step6 Double-click a discovered device for an Add dialog popup (Figure 2-6).

Figure2-5 Example Add dialog when adding a Chopan server

[Lobby_Sedl4HP FeB0:0000:0000:0000:0215:5d00:0011:7ef4 1810

[SedDevBoard Fef0:0000;: 0000:0000;0215:6d00;000e:66fc 1610
Pa

Chopan Devices)
Neme |Address |chd BLACR x|

Name Address Chopan Port B

) Name |sedas s

) Address [1oz.168.1.36 |

() Chopan Port 1510

ance]

Add dialog fields described as follows:

+« Name
The name of the ChopanDevice component that will be created in the device’s Sedona app.
Because Sedona components have a 7-character maximum name, the default name is usually trun-
cated from the original NiagaraAX name. Often, you change this to a more meaningful name.

+ Address
IP address of the Chopan server, either IPv6 (Jennic-based device) or IPv4 (JACE). Do not edit.

+ Chopan Port
The software port on which this Chopan server listens—typically, the default 1810 is used. However,
if the Chopan server is configured to use another port, set this to match.

Step7 Click OK to add it, where it is listed in the “Chopan Devices” lower pane (Figure 2-6).

Figure2-6 Example added Chopan server (JACE)

& chopan Virbual <% Chopanh M Chopan Device Manager -

| @ % Learn Chopan Servers Success » [|

Discovered Chopan Devices 5 objects

[address _________________~|chopanPorg|
edl4HP & 3 0o ef+ |1810
[&] E_Wing_SedIOf Fed0:0000:0000:0000:0215:8d00:000F:66b1 1810
[&] SedbevEoard fe80:0000:0000:0000:0215:8d00:000e:66Fc 1810
[shed_Hibernta Fefi0:0000:0000:0000:0215:8d00:0009:b017 1810
Sedl6_S_BLPa 192.168.1.36 1510

Name Address Chopan Port ®m
[JACE_6 192.168.1.36 1810

In this example, the name of the device was changed to “JACE_6" before adding.

In the Chopan Virtual gateway device’s Sedona app, the corresponding ChopanDevice component is
now under its ChopanNetwork.

Step8 Now to access the Chopan Point Manager for any device, simply double-click the device in the lower
pane. See “Chopan Point Manager quick start”.
Note: At the time of this document, there is no “Edit” for a device added in the Chopan Device Manager, although

if necessary you can delete a device by selecting it and clicking the Delete (%) tool on the toolbar above.
Otherwise, to edit the component (including its name), open a Sox connection to the device and make
changes to it in the device’s app.

Chopan Point Manager quick start

Use the Chopan Point Manager to select data items to initiate (client) Chopan read or write requests.
There must already be at least one Chopan Device under the “Virtual Chopan Network’, added using the
Chopan Device Manager. See “Chopan Device Manager quick start” on page 2-6 for related details.

With the JACE station open in NiagaraAX Workbench:

Step1 Ifyou are not already there, go to the Chopan Device Manager under the 3 Chopan Virtual
gateway of a SedonaJen6 IpDevice under the SedonaJen6 lpNetwork.

Ni AX
iagara 2-7

Sedona Framework Chopan Usage

Setting up a Jennic-based device as a Chopan client Chapter 2 - Sedona Framework Chopan Quick Start

Client side Chopan procedures for a Jennic-based device November 9, 2011

Note:

Step 2

Step 3

Step 4

Note:

2-8

To do this, expand the SedonaJen6 IpNetwork to reveal child SedonaJen6lpDevices, expand a
device and double-click its @ Chopan Virtual gateway, and click the % ChopanN (Virtual Chopan
Network) for its Chopan Device Manager view.

If a hibernating device, first invoke the right-click action on the device: Maintenance Mode, and wait
for the “mode active” popup in Workbench. Otherwise, you will not see the “ChopanN” node mentioned
above, and the Chopan Virtual gateway will remain in fault.

Double-click a device listed under “Chopan Devices”

The view changes to the Chopan Point Manager for that device, which may initially be blank. Any
previously defined Chopan points will be listed.

Click the 828 Discover button.

Depending if you selected a Sedona device or the JACE Chopan server, one of two results occurs:

« IfaSedona device, a “Sedona Discover Points” job runs, and the view splits in learn mode (top pane
has an expandable app node). See Figure 2-7 below.

Figure 2-7 Example discovered app node of a Sedona device (shown expanded)

firkual %% Chopan. B E_Wings M Chopan Poink Manager =
| ° ‘ﬁ Sedona Discover Points Success 2 B |
Chopan Server Points 14 objects
Property
+) service
+ 10
+ Chopstf
app save 0.1
app hibernate 0.z E
app quit 0.3
app reskart 0.4
app rebook 0.5
app appMame 0.6 Canfig
B app scanPeriod 0.7 Config
B3 app guardTime 0.8 Config =

In this case, skip ahead to Step 5.
+ Ifthe JACE Chopan server, a “Choose Root of Discovery” popup dialog appears, showing an expand-
able tree of containers. See the following Figure 2-8.

Figure 2-8 Example “Choose Root of Discovery” showing station’s Config containers

= Choose Root of Discovery x|

[t} Qa Services
+ Qa Drivers

+ EI Logic

+ (7 schedules

Eance]

This tree reflects containers in the root of the station’s Config node. See Step 4.

In the “Choose Root of Discovery” dialog for the JACE station, expand it as needed to find the container
holding the component of interest, and select it. Click OK.

If using “best practices’ this would be a folder created under the SedonaJen6lpDevice being configured,
which holds “ChopanTargetPoints” especially made for selection. See “Recommended “Best Practices” for
NiagaraAX Chopan client integration” on page 2-4.

After clicking OK, a “Niagara Discover Points” job runs, and the view is in learn mode.

NiagaraAX

Sedona Framework Chopan Usage

Chapter 2 - Sedona Framework Chopan Quick Start

Setting up a Jennic-based device as a Chopan client

November 9, 2011

NiagaraAX

Step 5

Client side Chopan procedures for a Jennic-based device

Figure 2-9 Selecting example root of discovery, and resulting discovered node

. Choose Root of Discovery

] €o, Services
= Qﬁ Drivers
+ <€F) Miagarahetwork
- 43 SedonalenélpNetwork
£ m Manitar
+ Bar Poll Scheduler
£ % Tuning Policies
- & E_wing_Sedlos

+ {23 Parent Pan Info
+{ Child Pan Info
+47% Chopan Yirtual

+ B Monitar
+
- : 2??;—:“ + 8< Poll Schechler AHU1T_Gc
- @ Htggspis * B Tuning Policies % == AHUL S5C out 133F7.out Runtime
+ [& shed_Hiberntg g = A4HUL 5o inl0 133f7.in10 Rurtirne
+ (1 ClgsP_S

+ [w_wWing_sedIos
+ [Lobby_SedI4HP
+ [@ SedDevBoard

+ <7 SedonaNetwork

Lo
: % S:E:a[du\es - (3 ChopanPts
+ @ AHU1_Sc

+ i@ ClgsP_s
| 0K [: i Cancel + @ Hegsp.s
+ [shed_Hiberntg

HtgsP_s

Chopan Points 0 objects

Name |Type |[¥alue [Uri |Fault Cause m

The top pane contains the selected folder or container, expandable as shown in Figure 2-9 above.

In the top discovered pane (Chopan Server Points), click to expand the top folder or app node until
the property (slot) of interest appears.

Double-click a single row to add one point, or select multiple rows and click # Add to add multiple
points. A popup Add dialog appears (Figure 2-10).

Figure 2-10 Double-click single property for Add dialog

& Chopan Yirtual 5 Chopanh M JACE & &l Chopan Point Manager -~
|° %, Miagara Discover Paints Success » [|
Chopan Server Points b objects
Component Property |Point Address |Property Type B

= ChopanPts
= {0 BHU1_ac
—T T
B AHUL S ini0 133f7.in10 Runtime
+ ClgsP_s \

Name |Type Uri B
Chopan Points
Name |[Type |¥alue |[Uri

) Name |nut

O Type [Boolean Poine [v]

Dur |L33£7.0ut | E&

In the Add dialog, note two of the three fields are editable. The three fields are described as follows:

e

+ Name
The default reflects the name (or some portion) of the source property—for example “out” or “nex-
tVal”. As Sedona components have a 7-character name limit, the default name may be truncated
from the original property name. Typically, you change this to a more meaningful name, working
within the 7-character limitation. Figure 2-11 shows a Name after editing in the Add dialog.

2-9

Sedona Framework Chopan Usage

Setting up a Jennic-based device as a Chopan client

Chapter 2 - Sedona Framework Chopan Quick Start

Client side Chopan procedures for a Jennic-based device November 9, 2011

Figure 2-11 Add dialog for Chopan point, where Name has been edited
EEE— x|

Name Type Uri B

0 Name [AHTL Sc |

2 Type
) uri
Boolean writable
+ Type

Chopan supports two data types: Boolean and Float (numeric), pre-selected according to source
property. Each type lets you create a read-only point: “Boolean Point” or “Float Point” (the default),
or a writable point “Boolean Writable” or “Float Writable”. (Note in the target Sedona app, this cre-
ates either a ChoBoo1Pt, ChoFItPt, ChoBoolWr, or ChoFI'tWr component).

Often, the default read-only point is appropriate—such as when the remote value only needs to be
read within a Sedona app. For example, the output of a Schedule component in the JACE’s station.

In other cases, where the Sedona device’s app needs to write the value, a writable point is needed.
For example, the device’s Sedona app needs to write a locally-sourced value to some remote device,
say a local temperature value from an I/O component, to be used in the remote device. In this case,
you would select a writable Chopan point (Float Writable), so you could link the out of the Sedona
temperature component to the writable Chopan point (ChoFltWTr). If the JACE station is the remote
device, ideally the selected target would be one of the “ChopanTargetPoints” that has already been
added to the station (see “Recommended “Best Practices” for NiagaraAX Chopan client integration”
on page 2-4).

o Uri
Not editable. Shows the Universal Resource Identifier or “handle” to the target component._slotin
either the JACE station or Sedona device’s app.

Note: At the time of this document, there is no “Edit” for a point added in the Chopan Point Manager, although

Step 6

Step 7

if necessary you can delete a point by selecting it and clicking the Delete (¥.) tool on the toolbar above.
Otherwise, to edit the component (including its name), open a Sox connection to the device and make
changes to it in the device’s app.

Click OK to add the point, where it appears listed in the lower “Chopan Points” pane.

In the device’s Sedona app, a corresponding Chopan client point component (ChoBoo IPt, ChoFI1tPt,
ChoBoo IWr, or ChoFItWr) is now under the ChopanDev i ce that represents the server.

When finished adding Chopan points, make a Sox tunnel connection to the device and link these client
points (found under App > service > ChopanN > ChopanDeviceName) into other components in its
Sedona app, as needed.

For additional Chopan Point Manager details, see “Chopan Point Manager notes” on page 3-5.

NiagaraAX

Sedona Framework Chopan Usage

CHAPTER

About Chopan in the Sedona Framework

This section provides various concepts and details about CHoPAN, including the applicable components
and views in both the JACE’s NiagaraAX station as well as Jennic-based devices” apps. These are the main
subsections:

+ “Chopan compared to Sox” on page 3-2

+ “Proxy point usage of Chopan” on page 3-2

+ “Workbench engineering of Chopan client points” on page 3-3
+ “Peer-to-peer configuration example” on page 3-4

+ “Chopan Point Manager notes” on page 3-5

+ “Data and point types in Chopan” on page 3-5
+ “ChopFltWr COV Increment” on page 3-6

« “Service pin support” on page 3-6

+ “Service pin setup” on page 3-7
+ “Chopan authorization” on page 3-8
+ “Maintenance Mode” on page 3-8

» “Chopan Diagnostics” on page 3-10
+ “NiagaraAX Diagnostic output” on page 3-10
+ “Sedona Framework Diagnostic output” on page 3-11

NiagaraAX

3-1

Sedona Framework Chopan Usage

Chopan compared to Sox Chapter 3 - About Chopan in the Sedona Framework
November 9, 2011

Chopan compared to Sox

CHoPAN is a Tridium proprietary protocol running over UDP/IP that enables Sedona Framework
devices to share data with JACE stations and other Sedona Framework devices. CHoPAN can be used as
an alternative to Sox Polling or Sox Eventing to allow a JACE station to read/write data in Sedona
Framework devices.

It is also the only way for Sedona Framework devices to read/write data in other Sedona Framework
devices, as there is no Sox client, only a Sox server.

Key comparison points between CHoPAN and Sox:

1. Sessionless vs. session-based

The Sox protocol is designed around an authenticated session between a client and server. CHoPAN
is sessionless; each request is independent of the previous one. So the Sox session requires the server
to maintain state information about the session, and effectively limits the maximum number of open
sessions to whatever resources the server is able to allocate for session management.

2. Network bandwidth usage

As a consequence of point 1, each Sox connection requires multiple messages to set up and tear
down and dedicated resources to maintain. There is continuous “keepalive” traffic to maintain the
session. CHoPAN is not authenticated, requires no connection setup and no keepalive traffic. This
makes CHoPAN a better choice on low-throughput networks like the wireless 802.14.5 Jennic.

3. Peer-to-peer communication

The Sedona Framework does not have a Sox client. So for a Sedona Framework device, the only cli-
ent option for peer-to-peer communication is CHoPAN.
Note: Communication from a Sedona Framework client to a Sedona Framework server via
CHoPAN may not be directly peer-to-peer. Due to the JenNet tree structure of a
Sedonajen6lpNetwork, a client may need to send its request up one or more nodes in the tree (possibly
to the coordinator) to reach the server node.

4. Hibernation

Any server (Sox or CHoPAN) must be available continuously for client access. So for hibernating
nodes, the only logical choice for sharing data is for them to be a CHoPAN client.

Note: Currently, Sedona Framework support for hibernating devices (typically battery-powered
devices) is not widely available. However, related NiagaraAX support exists in the
Sedonajen6lpNetwork driver and NiagaraAX Workbench, and is typically “noted” like this.

When the Sedona Framework device contains a CHoPAN client, it can initiate reads and writes from
other devices. The device can wake up, use CHoPAN to push and/or pull data from another device,
then go back to sleep. Sedona Framework devices cannot use Sox to initiate reads or writes because
only the Sox server code is implemented in the Sedona Framework.

5. Service Pin notification
The Sedona Framework device can generate a service pin notification to help user identify physical
devices. This is not possible with Sox.

Proxy point usage of Chopan

Perhaps the biggest payback from using Chopan are the efficiencies it provides in polling of Sedona proxy
points, providing that Jennic-based devices are configured for Chopan server operation. This applies to
any “non-hibernating” device (typically, any device that remains continuously powered).

To take advantage of this, simply configure each Jennic-based device for Chopan server operation, and in
the station’s proxy points for each device (under the SedonaJen6lpDevice’s POINts extension), assign all
proxy points to tuning policy(ies) that use “Chopan” as the “Comm Type” selection—the default type.

For more details, see “Setting up Jennic-based devices as Chopan servers” on page 2-2, and various
sections in the NiagaraAX Sedona Framework Networks Guide, such as “Create Sedona proxy points (and
action points’, “SedonaJen6lpNetwork properties”: tuning policy notes and Chopan comm type consid-

erations.

In this scenario, any other client-side usage of Chopan is not typically required—unless perhaps, devices
need to share data directly without station (Sedona proxy point) involvement.

NiagaraAX

3-2

Sedona Framework Chopan Usage

Chapter 3 - About Chopan in the Sedona Framework

Workbench engineering of Chopan client points

November 9, 2011

Workbench engineering of Chopan client points

NiagaraAX

Note:

You engineer Chopan client points using the “Chopan Virtual gateway” device extension of a selected
SedonaJené6lpDevice. Figure 3-1 below shows an example where a hibernating device (Dev_4) has
Chopan points added to both read station data and write local app values to the station.

At the time of this document, Sedona Framework support for hibernating devices (typically battery
powered devices) is not widely available. However, the SedonaJen6lpNetwork driver in the NiagaraAX
station is “ready” for such support, as described in this example. For another use of Chopan client points
that is fully supported now, see the example after this one, “Peer-to-peer configuration example’.

Figure 3-1 Access Chopan Virtual gateway using NiagaraAX Workbench to make Chopan (client) points
£ e e e JODSHD = o o o o o o e e e e e e e
MizgaradX Workbench 3.6
o later with .
JACE-2/6/7 with Sedona Jennic devices madeled in
Sedana Fral KTXE 1.1 Sedona Jennic =7 JACE station's SedonaJenGlpMetwork

LAM or

|
|
|
|
|
|
|
|
Internet |
|
|

!

= e A p — e 4
CHoPAN 4 ",,:\ Dev 4 |
SLOWPAN 4)<\k; < D
802.15.4 /’ 1
— ™ 7 — Hibemating
e Client , davice
Chopan Virtual gateway access of E:;::: far
SedanalenblpDevice Chopan points are paint data

persisted in app (only)

o Chopanil @ SedlacE = Sedens Propesty Shest -

Gopi] *
[192.168.1.36

1 O Address

1) Port (B0 fo-essss)
OB
i + @ Teme_n chopan::ChoFiwr [Temg_in:20]
i + Wl PenSin chopan::ChoBodWe [Fans_in:21]
+ |+ H BT chopan: :ChoFEWr (B T_in:24]
= | 2 @ 20 Sk chopan:sChoBoolt [Z1_Schd:25)

@ 08 _Temp chopan::ChoFkRt [0 _Teme:27]

: : :x © Tempn Flost wrkable 76,50 [k} 12247.m10
BT = FanS in Boolean Wikable true ok} 1224%0nid -
: : 71 5d = ET_n Float Writable 163.00 {ok} 1224b.n10 NG;[E Cl'l?rp:n
+ mmontde [2150 pocleanPornk bue ok} 13530 ! msaqrﬁgntl linking
+ B Chepanpts AT Float Poink 163,00 {ck} 1355500t ‘ Z -
a = e = into other
components in the
devica’s App.
Adding Chopan points in Point Manager creates Py
points in device's Sedona App \E)

In the Figure 3-1 example, once the SedonaJen6lpDevice has been set to “Maintenance Mode’, its Chopan
Virtual gateway is accessed in order to add a ChopanDevice representing the JACE server under its
ChopanNetwork. Then, as shown on the left side, the Chopan Point Manager is used to add Chopan
points under it—ideally, using target Niagara components already made in a “ChopanPts” folder.

This creates Chopan points in the device’s app (ChoFltWr, ChoBoolWr, ChoBoolPt, ChoFItPt), which are
then typically linked into other components in the device’s app (in order to write local values or read/use
station values). Chopan points persist only in the Jennic-based device; the Chopan Virtual gateway in the
station (used to create them) dynamically reflects corresponding components in the app.

Because of the underlying JenNet tree structure of the wireless network of Jennic-based devices, the

communications path of CHoPAN messaging between devices may not be directly between the client and
server nodes. For example in the network in Figure 3-1, Dev_4 (as an end node) may be a child node of
Dev_2 (acting as a router), such that JACE to Dev_4 messaging involves Dev_2. Note that JenNet uses a
“self-healing” tree architecture, such that it automatically reconfigure if routing changes are warranted.

3-3

Sedona Framework Chopan Usage

Workbench engineering of Chopan client points Chapter 3 - About Chopan in the Sedona Framework

Peer-to-peer configuration example November 9, 2011

3-4

Peer-to-peer configuration example

Chopan points can also allow Jennic-based devices to directly exchange data (peer-to-peer). Engineering
is similar to the previous example, beginning with Chopan Virtual gateway access to the client
(requesting) SedonaJen6lpDevice in the station. See Figure 3-2.

Figure 3-2 Chopan Virtual gateway used to make Chopan (client) points in peer-to-peer data exchange

= Jobsitg - — - ——————— =

NiagaraAX Workbench 3.6
or later with

JACE-2/6/T with
Sedona Framewark TXS 1.1 i

Sedona Jennic

LAN ar
Intermet

~
~CHoPAN—

S
1 BLoWPAN N -
. 802.15.4 e —
l ~
I — -

Chopan points are persisted
in client app (only)
I

Chopan Virual gateway access of
SedonaJdentlpDevice

[
|
|
|
|
|
|
|
|
|
|
) |
A |
|
|
|
|
|
|
|
|
|
|
|

5 Choparll M Skev 3 £ | Sedora Progerty Shest =

£080:0000: 0000:0000: 0215: 8400: D0LL)

ST N T a— (R

T e

+ @ Cowk ¥ chopan::Choriit [Count_3:27]
+ EIRNS chopan::CheBootw [Rive_3:28]

+ b Parert Pan Inf
*) Chld Pan Irfo

MOTE: Chopan
points reguire

Type
= Count 3 Flogt Pork SPA0I5.00 {hy 6.1
= Bt 3 Bockeen Wrkeble Falee fok} .

B i3 subsequent linking
e into other
+ [SMev_2 companents in the
+ 1@ e ; i device's App. L1
5 Adding Chopan paints in Paint Manager creates f?\
points in device's Sedona App U

In the Figure 3-2 example, the SedonaJen6lpDevice for Dev_1 has its Chopan Virtual gateway accessed
in order to add a ChopanDevice representing Dev_3 under its ChopanNetwork. Then, as shown on the
left side, Chopan points are added under that device—in this case one Float Point for a count slot in the
Dev_3, and another Boolean Writable for the in slot of a relay 4 output in Dev_3.

This creates Chopan points in the client device’s app (ChoFItPt, ChoBoolWr), which are then typically
linked into other components in the app (in order to read/use remote count value, write remote relay
output). Note that Chopan points persist only in the requesting client Jennic-based device (Dev_1).

In this case, Dev_1 requires Chopan client configuration, and Dev_3 requires Chopan server configu-
ration. Note that both devices could also be (additionally) configured in a complimentary fashion, say if
Dev_3 required client access to read or write values served by Dev_1. However, this is not shown here.

Because of the underlying JenNet tree structure of the wireless network of Jennic-based devices, the
communications path of CHoPAN messaging between devices may not be directly between the client and
server nodes. For example in the network in Figure 3-2, Dev_3 may be a child node of Dev_2 (acting as a
router), such that Dev_1 to Dev_3 messaging involves Dev_2. Note that JenNet uses a “self-healing” tree
architecture, such that it automatically re-configures if routing changes are warranted.

NiagaraAX

Sedona Framework Chopan Usage

Chapter 3 - About Chopan in the Sedona Framework Chopan Point Manager notes

November 9, 2011

Peer-to-peer configuration example

Chopan Point Manager notes

The Chopan Point Manager, the default view on a B virtual ChopanDevice under the “8 virtual

ChopanN(etwork) of the % Virtual Chopan gateway of a SedonaJen6lpDevice, provides the
means to add and delete client Chopan points in the app of the represented device.

Figure 3-3 Chopan Point Manager provides selectable columns, including Status Code

4 Chopanh I SedlacE W Chopan Point Manager =

Ie rr— |L| MName : Type : Yalue Uri : Status Code |Faulm
== Temp_in Float Writable g1.10{ok} 12247.in10 0x40
- @ s3dev_4 2| |=m Fans_in Boolean Writable true {ok} 12249.in10 0x40
+ b Alarm Source Info B BIrT_in Float wiritable 163.00 {ok} 1224b.in10 Ox40
k] @ Foints == 71 _Schd Boolean Point trus {ok} 1355300t 0x40
+ Q) Parent Pan Info =1 QOA_Temp Float Paint 62,28 {ok} 13555.00t 0x40

+ {3 child Pan Info
= @ Chopan VYirtual
- €@ Chopanh S
SN [Sed1ACE

+ =@ Temp_in

+ B8 Fan5_in

+ B3 BIrT_in

+ mm 71_5chd
+ = OA_Temp
+ 7 chopanPts =

i

Additional support is provided in this view (Figure 3-3) for these functions:

+ Diagnostic codes
Using the table selector & control, you can add “Status Code” to the Chopan Points pane. This
displays a hex numerical code representing the response status of the point’s latest request. A code
of 0x40 (decimal 64) means “OK”, that is everything is fine.
Other codes can help diagnose possible issues. Note that in the device’s app, the Sedona Prop-
erty Sheet view for any Chopan point provides a “Status Code” property with “decoded” text
“Name” string, so you see “OK” instead of 0x40, or “Unauthorized” instead of 0x81. For a listing of
possible status code values with names and descriptions, see Table 3-1 on page 10.

+ Manual set (write).
For any writable point in the Chopan Point Manager, you can right-click it for a Set (write) action.

Figure 3-4 Writable points in Chopan Point Manager have available Set action to write

B _Ramp max 25.3
=W _Ramp period 25.4 [=]
41 [[

H Chopan Points 3 objects
Name Type ¥alue Uri |Fault Cause |@m
== Count_3 Float Paint 606206,00 {ok} 16,1
= Rly4_3 Boolean Writable true {ok} 24.1

RampMin [Float Writsble 0,00 {ak} m

Copy Cirl+C

BT <

This causes the value to be set on the client, which in turn writes the value to the server.

For step details on using the Chopan Point Manager, see “Chopan Point Manager quick start” on page 2-7.

Data and point types in Chopan

NiagaraAX

CHoPAN supports two data types in the Sedona Framework client:

+ Boolean (two-state) — Chopan Boolean Point or Boolean Writable (ChopBoolPt, ChopBoolWT).
+ Float (numeric) — Chopan Float Point or Float Writable (ChopFIltPt, ChopFltWTr)

When making Chopan client points in the Chopan Point Manager, discovery makes available only
those properties (slots) that are compatible with these two data types.

« Ifdiscovering data items in a Sedona Framework device’s app, selectable slots for Float points in-
clude those with data types float, long, double, short, and int(eger). Only slots of type bool are
selectable for Boolean points. Other component slots using other data types, e.g. Buf (string), as
well as actions, are shown “ghosted”—that is they are unavailable.

« Ifdiscovering data items in the JACE’s station, only components with selectable properties appear—
components based on incompatible data types, such as statusString, statusEnum, string, etc., do not

3-5

Sedona Framework Chopan Usage

Service pin support

Chapter 3 - About Chopan in the Sedona Framework

ChopFItWr COV Increment

Note:

November 9, 2011

display. Selectable properties for Float points include data types statusNumeric, float, double,
short, and integer. Selectable properties for Boolean points are statusBoolean and boolean.

Regardless of target, the “out” slot of a Chopan point in the device’s app is either a float (ChoFItPt,
ChoFltWr) or a bool (ChoBoolPt, ChoBoolWTr).

The NiagaraAX Chopan client, which is largely Sedona proxy points that use an assigned tuning policy
based on the “Chopan” Comm Type, can also process string type data. The JACE platform provides a much
larger code space for this type of support than a typical Jennic-based device.

ChopFItWr COV Increment

Writable Chopan float points (ChoFltWr) have an available “Cov Incr” property (COV increment), as
shown on their Sedona property sheet (Figure 3-5).

Figure 3-5 Sedona property sheet for ChopFItWr component (writable Chopan float point)

¥ SedlAcE = Sedona Property

] Sed]ACE (chopan::ChopanDevice)

I () Meta Group [1] 2

L) (D Address [192,168.1.36
O Port [0 Jm-s%3s)
_oede [Due [7]

1}. Temp_in chopan::ChoFltwr [Temp_in:20]

|) Meta Group[1] »

| @ Uri |12247.in10

_| {7 Status Code
Jen Froe]

|- © covina]
+ [l Fang_in chopan::ChoBoolwr [Fans_in:21]
+ [BIT_n chopan::ChaFltwr [BIrT_in:24]

You can specify a value larger that the default (0.00) to prevent unnecessary Chopan client requests. This
can be useful if the linked input (source) in the device’s app has a rapidly fluctuating value.

Service pin support

Note:

Chopan provides available support for “service pin” notification from a Jennic-based device, intended as
an installation aid. The service pin feature sends a special message from the device to the JACE station,
identifying itself. The user interface is in the Sedona Device Manager view of the station’s
SedonaJen6lpNetwork, shown in Figure 3-6 below.

Figure 3-6 Device component becomes “highlighted” if the device’s app implements “service pin” routine

Prior to receiving Service Pin |

Name Type Exts |Address |Status Health B

[dev 172.16.1.1 Sedona Jenslp Device @ 172.16.1.1 {ok} Ok [10-May-11 11:24 AWM EDT]

[dev 172.16.1.2 Sedona Jenslp Device @ 172,16.1.2 {ok} Ok [10-May-11 11:24 AM EDT]

[dev 172.16.1.3 Sedona Jenslp Device @ 172.16.1.3 {ok} Ok [10-May-11 11:27 AMEDT]

[dev 172.16.1.4 Sedona Jenslp Device @ 172.16.1.4 {ok} Ok [10-May-11 11:27 AM EDT]

[dev 172.16.1.5 Sedona Jenslp Device @ 172.16.1.5 {ok} Ok [10-May-11 11:27 AM EDT]

1] | |

£ New Fol H Database 5 objects
Name Type Exts |Address |Status Health B

After [dev 172.16.1.1 Sedona Jenslp Device @ 172.16.1.1 {ok} Ok [10-May-11 11:24 AM EDT]
receiving [dev 172.16.1.7 Sedona Jenélp Device @ 172.16.1.2 {ok}

Service Pin — L% 2 Jene
[dev 172.16.1.4 Sedona Jenslp Device @ 172.16.1.4 {ok} Ok [10-May-11
[dev 172.16.1.5 Sedona Jenslp Device @ 172.16.1.5 {ok} Ok [10-May-11 11:27 AM EDT]
4] i} | 3
| £ New Folder || [3 New || Edit || G Discover || Cancel || Add H Match |

If a service pin message is received, the device row entry for it in the device manager’s database table
becomes highlighted, as shown in Figure 3-6. This can be useful after discovering and adding devices,
when making positive associations in order to accurately rename device components.

Only one device row in the Sedona Device Manager view can be highlighted from a service pin message. If
service pin messages are received from multiple devices, only the “last one” remains highlighted.

Service pin setup is described in the following section.

NiagaraAX

Sedona Framework Chopan Usage

Chapter 3 - About Chopan in the Sedona Framework Service pin support

November 9, 2011

Service pin setup

Service pin setup

Support for service pin requires the JACE station has a working SedonaJen6lpNetwork, with communi-
cating SedonajJen6lpDevice child components. Discovery and addition of devices is the typical method.
For details, see “Adding discovered SedonaJen6lpDevices” in the NiagaraAX Sedona Networks Guide.

The remainder of setup for any Jennic-based device to support service pin messaging is as follows:

.

The device needs the chopan kit installed, with its app configured to support Chopan client opera-
tion. See “Add chopan kit to Jennic-based device” on page 2-2 and “Add core Chopan client compo-
nents to App” on page 2-5.

No further configuration of the ChopanN (ChopanNetwork) component in the app is needed.

If supported by components in kits available from the device’s vendor, where the device has some
local physical input (say, a certain pushbutton switch) that can physically initiate a message, add that
component to the device’s app, along with a 81 SrvcPinTrig component from the chopan palette

(from M Sedona Palette sidebar of Workbench).
Such a configuration is shown below, where the two components are in a folder named “SvcPin”.

Figure 3-7 Example “Button” and SrvcPinTrig components in Jennic-based device’s app

(5]

G @ [

Butten SrvcPin
Biramouten chopan::SrwcPinTrig B
out Fal. In Falze

+ & Tooks
- B

-
+ EI SErvice
+E10
=} ﬁ SvcPin
+ {2 Button
B E StvcPin
< D] |
| (7) chopan Iﬂ
@ ChaFItPt [76 B] e
[choFlcwr [34 B]

- ™ Sedona Palette &

[chopanDevice [112 B]
4B ChopanMetwork [292 B]
@ ChopanService [308 B]

£ ChopanServlet [48 B]
B srvcpinTrig [40 B]

n

Link the bool out slot of the initiating component (in this case, Button) to the “in” slot of the SrvcPin-
Trig component, as shown in Figure 3-7. A transition on the “in” slot of SrvcPinTrig causes the cor-
responding row for that device in the station’s Sedona Device Manager (if being viewed) to become
highlighted.

Note that another “programmatic” approach is possible, by invoking the “Service Pin” action on the
ChopanNetwork component in the device’s app.

Figure 3-8 Invoking Service Pin action on ChopanNetwork component to trigger service pin message.

= Sedona Prope

(73 Hibernation Resets Steady State) False |+ [
Q, 0 I¥ly Metwork ﬂ =l (£ service sysiiFolder [service:1]
+ <F) sedonaklsbwor | () et Growp [1] >
+ (£ Logic + 5 plat jennic:: JennicRouter [plat:z]
& I;I? sl s | @ SO S0 SoService [so 3] [
es
+ g History + Q users sysilserService [users:4]
= éﬁ Sedona (T2074HP-107: 11 | @ Scansy £2074]: :5ensorScanService [Scansvia]
+ & Tooks . + g Chopans chopan::Chopanservice [Chopans:7)]
- E . | @Paﬂlﬂfu paninfa::PaninfoService [Paninfo:d]
- SErvICE H
B g plat i + G Beat t2074j: (HeartEeatService [Beat:11]
+ @sox | € Chopanhl i Chopanh:25]
+ 8 users der [10012
+ g Scandy = Reset Stats
+ g% Chopan3s
Force Update
+ ¢g# PanInfo (7] ¥ cut Chrl+ P
+ @ Beat e % Copy Chel+C
+ 4 Chopanh E Paste Chel 4 |
+E110 e Paste Special =]

NiagaraAX

Figure 3-8 shows this action being invoked from the property sheet of a device’s App. This method
does not require the SrvcPinTr ig component (from the chopan palette) to be used in the app.

3-7

Sedona Framework Chopan Usage

Chopan authorization Chapter 3 - About Chopan in the Sedona Framework
Service pin setup November 9, 2011

Chopan authorization

CHOoPAN is an unathenticated protocol. Sedona Framework Chopan servers do not authenticate or
prevent any reads or writes to app components. By default, the Chopan server in the Niagara (JACE)
station allows reads of any appropriate component slot. However, writes from apps in Sedona Framework
devices to components in the station are checked for authorization.

This is not part of the CHoPAN protocol, but is internal to the Niagara station. Enabling the Chopan
Server in the SedonaJen6lpNetwork automatically creates a User in the station’s UserService named
“CHoPAN” See Figure 3-9.

Figure 3-9 CHoPAN user requires write permissions if writes from app to station are permitted

= ol 1Hi Fig 2 User Manager -
E@ Name Full Name Enabled |Expiration |[Network User |Pi@
B admin true Mever False
- B# Station (Sed6_1HbDew) Al | & uest false Mever False
- B config 8, FacMgr Faciity Manager true Mever False
= @ Ser B SFree Scott Free true Mewver False
EN-Y 2 CHoran true Mewver false
+ 2 admin I %
o 8 guest \‘\
+ 2 ueer reot| T)
B 8 FacMgr
B 8 SFree
+ B CHoPAN
+ O CategorySer
+ % Jobservice © Name |
+ L\ AlarmServicd) Full Name | |
+ 05 HistoryServi .
+ [SoxTunnel) Enabled O e []
+ . AuditHistory,) Enpiration &> Never Expires < Expires On [06-0ot-2011 11:59 PM EDT |
+ 2 LogHiskary
+ &5 Programser) Permissions [] Super User {access entire station, file system) |1=rwiBWI
H @ BackupSeryi) Network User u — =
+ I e
4 il {_) Prototype Name I— x|
Oumone 1B | et [| M
Passwordl@ v v
) Password
Confirm IE Category 2
Cateqory 4
o . 1

Cateqgory 5
Cateqgory &
Category 7
Cateqgory &

Cance]

As shown in Figure 3-9, you may wish to set write (W) permissions on one or more categories in the JACE
station for user CHoPAN. If using the recommended “best practices’, where all components with target
properties in the station are under each SedonaJen6lpDevice, in a “ChopanPts” (or similarly-named)
folder, then limiting write permissions to the category assigned to the SedonaJen6lpNetwork (with
inherited permissions for its child components), would be one logical option.

Maintenance Mode

Note: At the time of this document, Sedona Framework support for hibernating devices (typically battery
powered devices) is not widely available, including “Maintenance Mode” as described here. However, the
Sedonajen6lpNetwork driver in the NiagaraAX station is “ready” for such device support.

Maintenance Mode provides the means for a hibernating Jennic-based device to become “awake” to
accept an incoming Sox connection from NiagaraAX Workbench. Typically, this applies only to a battery-
powered device, which spends most of the time in a very low-power (hibernation) state, with its Sedona
Framework VM and RF communications disabled.

The Workbench user invokes a Request Maintenance Mode action on the station’s
SedonaJen6lpDevice that represents the device. This sets a flag in the SedonaJen6lpNetwork’s Chopan
Server that maintenance mode has been requested.

Note: For a description of how this works from the NiagaraAX (station) side using Workbench, see
“Sedonajen6lpDevice actions” in the NiagaraAX Sedona Networks Guide.

Ni AX
3-8 iagara
Sedona Framework Chopan Usage

Chapter 3 - About Chopan in the Sedona Framework Maintenance Mode
November 9, 2011 Service pin setup

The Chopan client operating in the device’s app makes a periodic Chopan client request, checking this
maintenance mode (Mm) flag. If detected set, the device awakens into “Maintenance Mode’, allowing a
Sox connection to it to be made. Once a Sox connection is made, the device remains awake for the
duration of that connection, returning to hibernation only after the Sox session has ended.

Related properties are in the ChopanNetwork component in the device’s app. See Figure 3-9.

Figure 3-10 ChopanNetwork expanded in device’s App property sheet, maintenance mode properties

Jﬁ':'-ed-:wna (T2074LP)f172.16.1.5 = Sedona Property Sheet -
@ ChopanS chopan::Chopan3ervice [Chopans:7] =
%Qﬁ ChopanM chopan::Chopanhetwork [Chopanhi:a]

) Meta aroup [1]
{2} Min Update Time s
() Max Update Time H
) Max Awake Time 5
() Retries [0- 2585] —
) Msg Timeouk Msec ms
{0 Mar Addr [o.0.0.0
() Mar Port [0 - 65535]
| 3 Mm Check Freq [F Tin-esss =
I (3 Mm Timeout s[u-essss]
) Timeouts
© Msq Oks
+ [ZedlacE chopan:: ChopanDevice [Sed]ACE: 19]
i + @3 SEMSOrS E20744: :5ensorScanservice [Sensorsia] i _ IE

+ Mm Check Freq — specifies the number of hibernation cycles between checks for maintenance
mode.

+ Mm Timeout — specifies how long, once the device receives the maintenance mode request and be-
comes awake, that it waits for a Sox connection to be made. The default is 60 seconds.
This timeout prevents battery drain if a user places a device in maintenance mode, but then forgets
to make a Sox connection. It the timeout expires without a connection made, hibernation resumes.

Note: Any hibernating-type device requires similar configuration, meaning it should have the chopan kit
installed, and be configured as a Chopan client. See the vendor’s documentation for any further details.

NiagaraAX

Sedona Framework Chopan Usage

Chopan Diagnostics

Chapter 3 - About Chopan in the Sedona Framework

NiagaraAX Diagnostic output

Chopan Diagnostics

Currently CHoPAN client points can be either Boolean or numeric, with read-only and writable versions
of each. Points in the network are updated in a “round-robin” fashion by walking through the Chopan-
Network’s child devices, and through each device’s child points.

+ Read-only points (ChoBoo Pt and ChoF I tPt) are updated by issuing a CHoPAN GET request for
their configured URIL, and updating the out slot with the response value.

+ Writable points (ChoBoo IWr and ChoF 1'twr) are updated by issuing a CHoPAN PUT request to
their configured URI, with the value contained in their iz slot.

+ Each point has a Status Code slot that reflects the response status of the latest request. Status codes
that may appear are shown below. The friendly text “Name” appears in the Sedona Property
Sheet view for any Chopan point. In the Chopan Point Manager, the hex numerical 0OXNN
status codes display (see Figure 3-3 on page 5). Table 3-1 provides a listing of possible codes.

Table 3-1 CHOoPAN Status Codes

November 9, 2011

Name CHoPANCode | HTTP Code | Description

OK 0x40 (64) 200 Everything is fine—successful read or write.

-- 0x00 (0) n/a Point has not been read or written yet.

Decoding Error 0x01 (1) n/a There is an error in the decoding value from the
sever.

CHoPAN Timeout | 0x02 (2) n/a No response was received from the server.

Bad Request 0x80 (128) 400 The server rejected the request—see station out-
put for details.

Unauthorized 0x81 (129) 401 The CHoPAN User in the station does not have
permissions to modify this component/slot.

Not Found 0x84 (132) 404 The specified URI does not map to a valid com-
ponent/slot reference.

Server Error 0xA0 (160) 500 The server experienced an internal error—see

station output (if JACE server) or serial port
diags (if Jennic-based device server) for details.

NiagaraAX Diagnostic output
The (JACE) station running the SedonaJen6 lpNetwork provides a “spy” logSetup page, where you
can select processes for trace (verbose) output in the standard output of the station, viewable in the
platform’s Application Director view. Among these are two for Chopan messaging (Figure 3-11).

NiagaraAX

Sedona Framework Chopan Usage

Chapter 3 - About Chopan in the Sedona Framework Chopan Diagnostics
November 9, 2011 Sedona Framework Diagnostic output

Figure 3-11 Spy logSetup for station has two Chopan-related process choices

(=18 % Station (SedJa_1HibDew) i Rema y i logSetup O mes:

ﬁo ...nalenglphetwork. chopanswr |

Ea D n power message | [] [x] [] L=
+ & Platform schedule message | [] [X] [] L1
= schedule.scheduleManager message | [_] [%] [_1] [_]
- ?snsffmces sedona-Sedonalendlpietwork message | [_] [%] [_1 [
= €8 Drivers sedona-Sedonalensipietwork.chopan |trace %1 [] [] [1]
+ &1 Niagarahletwark sedona-Sedonalendlpketwork.chopanSyr |message [J\? [x] [_1 [
sedona-Sedonalendlphetwork.sox message | [_] [x] [[

Connected ko 192,168.1.386

TRACE [14:52:07 07-0ct-11 EDT][sedona-Sedonalentlpletwork. chopan] response:

ATTE/L.0 200 O [
Age: 0O
Content-Type: application/octet-stream Dump Threads

| Transaction-Id: 28352

‘
4010491683b00240103£00000002401044Fa000002400902400802 Verify Software
TRACE [14:52:10 07-0ct-11 EDT][sedona-3edonalen6lpietwork.chopan] BATCH polling 3edPGrp [12
POST batch HTTP/1.0
Transaction-Id: 28353 Clear Dutput
4732342e31004731332e3500 _E
TRACE [14:52:10 07-0ct-11 EDT][sedona-3edonalen6lpletwork.chopan] response: Dutput Dial
HTTP/1.0 200 OK]
Lge: O Stream To File
Femtant_Teme: ammlicarionfartearostraan

+ sedona-SedonaJen6lpNetwork.chopan — Reflects Chopan client activity on the station, for
example “batch polling” of Sedona proxy points that use a tuning policy with Chopan commType.
+ sedona-SedonaJen6lpNetwork.chopanSvr — Reflects Chopan server activity on the sta-
tion, in response to incoming Chopan point requests.
Note: Setting log options to “trace” is meant for temporary diagnostic activity—be sure to return all station log
levels to the default “message” setting for normal operation.

Sedona Framework Diagnostic output

The ChopanService provides a diagnostic bit field to enable different levels of debug output, directed to
a local serial port on the Jennic-based device. This is typically a “developer-only” level of diagnostics.

This setting is determined by the “Diags” property value of the ChopanService in the device’s app, as a
hexadecimal value from 0 to ff, where bit 0 (LSB) to bit 7 (MSB) are defined as follows:

+ Bit0-1I/O debug - Traffic sent/received on the ChopanService UDP port (client and server).

+ Bit 1 - Server debug - Description of requests received by the server (if installed) and actions taken.
« Bit 2 - Client debug - Description of requests issued by the client (if installed).

« Bit 3 - Dot debug - One-character “mini-diags” to indicate state during work cycles.

« Bits 4 through Bit 7 - Unused/undefined.

NiagaraAX

3-11

Sedona Framework Chopan Usage

Chopan Diagnostics Chapter 3 - About Chopan in the Sedona Framework
Sedona Framework Diagnostic output November 9, 2011

NiagaraAX

3-12

Sedona Framework Chopan Usage

	Preface
	About this document
	Chopan FAQs
	Chopan usage in Sedona Framework terms
	Document change log

	Chopan software and hardware requirements
	Licensing, module, and kit requirements

	Sedona Framework Chopan Quick Start
	Setting up Chopan servers
	Setting up Jennic-based devices as Chopan servers
	Add chopan kit to Jennic-based device
	Add Chopan server components to App

	Setting up NiagaraAX as a Chopan server
	Verify station’s Chopan Server
	Understand/set Chopan authorization

	Setting up a Jennic-based device as a Chopan client
	Recommended “Best Practices” for NiagaraAX Chopan client integration
	Client side Chopan procedures for a Jennic-based device
	Add core Chopan client components to App
	Chopan Device Manager quick start
	Chopan Point Manager quick start

	About Chopan in the Sedona Framework
	Chopan compared to Sox
	Proxy point usage of Chopan
	Workbench engineering of Chopan client points
	Peer-to-peer configuration example

	Chopan Point Manager notes
	Data and point types in Chopan
	ChopFltWr COV Increment

	Service pin support
	Service pin setup

	Chopan authorization
	Maintenance Mode
	Chopan Diagnostics
	NiagaraAX Diagnostic output
	Sedona Framework Diagnostic output

