## METZ

## CONNECT

We realize ideas

## Digital Output Module MR-D04 1108361321 with manual control facility

## MR-DOA4

## 110836132101

 without manual control facility

## 1. Description

the Modbus modules with 4 digital outputs are designed fo local switching operations. They are suitable to operate electrical
components such as motors, contactors, lamps, sun-blinds etc. We recommend to protect the relay contacts additionally by a RC-element for high inductive loads. MR-DO4 is equipped with a manual control facility for manual switching of the relays. MR-DOA4 has no manual control facility
The outputs can be operated via a Modbus-Master. Setting of th lave address, bit rate and parity is done with the two address to 99 and bit rates $1200,2400,4800,9600,19200,38400,57600$ und 115200 Bd .
The device does not participate in bus communication if the address is 00 (reserved for broadcast commands).

## Continuation Description

communication with the master can be monitored with a watch dog timer. If master or communication fail the outputs are switched to their basic state (secure state) and the red LED is lighting. The
timer restarts with each valid message addressed to the device When defining the time constant it is necessary to take account of the baud rate, the number of slaves on the bus and the length of the messages per slave.

## 2. Declaration of Conformity

The device was tested according to the applicable standards. Conformity was proofed. The declaration of
at the manufacturer METZ CONNECT GmbH.
Notes Regarding Device Description
These instructions include indications for use and mounting of the device. In case of questions that cannot be answered with thes instructions please consult supplier or manufacturer
The indicated installation directions or rules are applicable to th
Federal Republic of Germany If the device is used in other coun tries it applies to the equipment installer or the user to meet th national directions.
Safety Instructions
Keep the applicable directions for industrial safety and prevention of accidents as well as the VDE rules.
Technicians and/or installers are informed that they have to electrically discharge themselves as prescribed before installatio or maintenance of the devices.
Only qualified personnel shall do mounting and installation work The information of these instructions have to be read and under stood by every person using this device.
Symbols
Warning of dangerous electrical voltage
Danger
means that non-observance may cause risk of life, grievous bodily harm or heavy material damage.

Qualified Personnel
Qualified personnel in the sense of these instructions are persons who are well versed in the use and installation of such device and whose professional qualification meets the requirements of their work.
This includes for example

- Qualification to connect the device according to the VDE put this device into operation, to power it down or to activate it by respecting the internal directions.
- Knowledge of safety rules.
- Knowledge about application and use of the device within the equipment system etc.


## . Technical Dat

Potocoll
Protocoll
Transmission rate
Cabling

## Supply

Operating voltage range
Current consumption
Output
Sutput contacts
Switching voltage max
Continuous current max
Total current for
all contacts
Switching frequency
Housing
Dimensions WxHxD
Weight
Mounting position
Mounting
Mounting in series
without space

## Material <br> Housing

Terminal block
Cover plate
Type of protection
Housing
Terminal blocks
Terminal blocks
erminal block
4 pole terminal block
Wire diameter

Module connection
Input/Output

Wire diameter
Protective circuitry
Modbus RTU
1200 to 115200 Bd (factory setting 19200 Bd Even) RS485 two wire bus with voltage

20 to 28 V AC/DC (SELV) $200 \mathrm{~mA}(\mathrm{AC}) / 70 \mathrm{~mA}$ (DC) 100 \%
$4 \times$ chan
5 A per rela,
12 A
360 switching cycles per hour
$1.4 \times 2.8 \times 2.6 \mathrm{in}$. ( $35 \times 70 \times 65 \mathrm{~mm}$ )
95 g
standard rail TH35 per IEC 60715 the maximum quantity of modules a maximum power consumption of 2 Amps (AC or DC) per connection to the power supply. For any similar block connection to the power supply is mandatory.

Polyamide 6.6 Vo
Polyamide 6.6 Vo
Polyamide 6.6
Polycarbonate

IP40
IP20
max. AWG $16\left(1.5 \mathrm{~mm}^{2}\right)$ solid wire max. AWG 18 ( $1.0 \mathrm{~mm}^{2}$ ) stranded wire min. 0.3 mm up to max. 1.4 mm (terminal block and jumper plug are
max. AWG $12\left(4.0 \mathrm{~mm}^{2}\right)$ solid wire max. AWG $14\left(2.5 \mathrm{~mm}^{2}\right)$ stranded wire min. 0.3 mm up to $\max 2.7 \mathrm{~mm}$ perating voltage polarity reversal protection of supply and bus

Temperature range
Operation
Storage
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
perating and bus activity green LED
Error indication red LED
Status of the outputs yellow LED

## 4. Wiring Diagram


5. Connection Diagram


METZ CONNECT GmbH

## 6. Mounting



## A DANGER

Risk of death by electric shock!
Switch off all electrical power supply before
starting work on energized parts. starting work on energized parts.
y before

The device can be snapped-on to a TH35 rail. To remove the devic Device connection according to wiring diagram. Strip the Device connection according to wiring diagram. Strip the wires by
7 mm , put on wire end sleeves, insert them into the terminal body nd fix them with an appropriate screwdriver.
Plug in the terminal block for bus connection
 Connect the cable for bus supply
Connect the cable for bus supply


## Mounting in series



The module can be aligned without interspace. Use the jumper plug to connect bus and supply voltage when the modules are mounted in series.
to maximum quantity of modules connected in line is limited ${ }^{\text {DC) per connection to the power supply. For any similar block }}$ of additional modules a separate connection to the power supply is mandatory.

## 7. Bit rate and Parity setting

The bit rate and parity can be set in the programming mode when ajumper is plugged behind the front cover of the module. This jumper is removed in normal mode. A connection to the bus is not
required during bit rate setting. required during bit rate setting.
The bit rate of the modules can be set in the following way:
2. plug a jumper to the two middle pins of the 4 pole header
2. between the red and green LED (());
3. set the desired parity and bit rate with the address switches (3) in accordance to the chart below.

| (40) (20) (20) (20) (20) (30) |  |  |
| :---: | :---: | :---: |
| v |  |  |
|  | (3) ${ }_{x 1}^{x 10}$ |  |
| ERROR oleole BUSY <br> (2) Jumper below A the faceplate $\qquad$ |  |  |
| (40) (40) (40) (4) (40) (0) |  |  |
| $\begin{array}{llllll}11 & 14 & 12 & 21 & 24 & 22\end{array}$ |  |  |

4. switch on the supply voltage of the module; it is now permanently saving the bit rate in an EEPROM;
5. switch off the supply voltage of the module;
6. remove the jumper from the header and place the front cover

| $\begin{array}{\|c} \hline \begin{array}{c} \text { Switch } \\ \text { x10 } \end{array} \\ \hline \end{array}$ | 1 | 2 | 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parity | even | odd | none |  |  |  |  |  |
| $\begin{gathered} \text { Switch } \\ \text { x1 } \end{gathered}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Bitrate (Bit/s) | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200 |

If the settings differ from the settings specified in the chart the factory setting applies.
Factory setting: 19200 Bd Even

## 8. Software description

### 8.1 I/O commands

01 (0x01) Read Coils"
Request
Valid Coil Starting Address $0 . .7$
$*$ for MR-DOA4 Address $4.7=0$
for MR-DOA4 Address $4 . .7$
Response
$\begin{array}{ll}\text { Byte Count } & 1 \\ \text { Output Status } & \text { Bit0 } \ldots \text {.. } \\ & \text { Bit7 }\end{array}$

| Bit | Information |
| :---: | :---: |
| 0 | 0 = Status relay 1 off |
|  | 1 = Status relay 1 on |
| 1 | $0=$ Status relay 2 off |
|  | 1 = Status relay 2 on |
| 2 | 0 = Status relay 3 off |
|  | 1 = Status relay 3 on |
| 3 | 0 = Status relay 4 off |
|  | 1 = Status relay 4 on |
| 4* | $0=$ relay 1 switched via bus |
|  | 1 = relay 1 switched via manual control |
| 5* | $0=$ relay 2 switched via bus |
|  | 1 = relay 2 switched via manual control |
| 6* | $0=$ relay 3 switched via bus |
|  | 1 = relay 3 switched via manual control |
| 7* | $0=$ relay 4 switched via bus |
|  | 1 = relay 4 switched via manual control |

"05 (0x05) Write Single Coil"
Request
$\begin{array}{ll}\text { Valid Output Address } & 0 . .3 \\ \text { Valid Output Value } & 0 \times 0000 \text { or 0xFF00 }\end{array}$
Response
Echo of the request
"15 (0x0F) Write Multiple Coils"
Request
Valid Coil Starting Address 0 .. 3
Valid Quantity of Outputs 1 .. 4
Output Value
0 or 1 in Bit0 .. Bit3

| Bit | Information |
| :---: | :--- |
| 0 | $0=$ Status relay 1 off |
|  | $1=$ Status relay 1 on |
| 1 | $0=$ Status relay 2 off |
|  | $1=$ Status relay 2 on |
| 2 | $0=$ Status relay 3 off |
|  | $1=$ Status relay 3 on |
| 3 | $0=$ Status relay 4 off |
|  | $1=$ Status relay 4 on |

Response
Function Code, Starting Adress, Quantity of Outputs

## Continuation Software description

"03 (0x03) Read Holding Registers"
Valid Register Starting Address $0 . .1$ or 66
Valid Quantity of Registers 2 or 1
Response
Response
Function Code, Byter
Values Register 0:

| Bit | Information |
| :---: | :---: |
| 0 | $0=$ Status relay 1 off |
|  | 1 = Status relay 1 on |
| 1 | 0 = Status relay 2 off |
|  | 1 = Status relay 2 on |
| 2 | $0=$ Status relay 3 off |
|  | 1 = Status relay 3 on |
| 3 | 0 = Status relay 4 off |
|  | 1 = Status relay 4 on |
| 4 | $0=$ relay 1 switched via bus |
|  | 1 = relay 1 switched via manual control |
| 5 | $0=$ relay 2 switched via bus |
|  | 1 = relay 2 switched via manual control |
| 6 | $0=$ relay 3 switched via bus |
|  | 1 = relay 3 switched via manual control |
| 7 | $0=$ relay 4 switched via bus |
|  | 1 = relay 4 switched via manual control |

## Values Register 1:

| Bit | Information |
| :---: | :---: |
| 0 | $\begin{aligned} & 0= \text { Initial state after Reset or communication } \\ & \text { monitoring relay } 1 \text { off } \\ & \hline \end{aligned}$ |
|  | $\begin{aligned} 1= & \text { Initial state after Reset or communication } \\ & \text { monitoring relay } 1 \text { on } \end{aligned}$ |
| 1 | $0=$ Initial state after Reset or communication monitoring relay 2 off |
|  | $\begin{gathered} 1=\text { Initial state after Reset or communication } \\ \text { monitoring relay } 2 \text { on } \end{gathered}$ |
| 2 | $\begin{array}{\|l\|l\|} \hline 0= & \text { Initial state after Reset or communication } \\ \text { monitoring relay } 3 \text { off } \end{array}$ |
|  | $\begin{array}{\|l\|l\|} \hline 1=\text { Initial state after Reset or communication } \\ \text { monitoring relay } 3 \text { on } \end{array}$ |
| 3 | $\begin{aligned} & 0= \text { Initial state after Reset or communication } \\ & \text { monitoring relay } 4 \text { off } \end{aligned}$ |
|  | $\begin{array}{\|l\|l\|} \hline 1= & \text { Initial state after Reset or communication } \\ \text { monitoring relay } 4 \text { on } \end{array}$ |

Value Register 66
Time constant for communication monitoring.
Register Value $=0(0 \times 0000)($ default $)$ there is no communication monitoring, all other values are for communication monitoring with a solution of 10 ms .
$0 \times 0001$ to $0 \times F F F F=>0.01$ to 655.35 seconds $=10.9$ minutes

## Continuation Software description

## "06 (0x06) Write Single Register"

| Request | 0 or 1 or 66 |
| :--- | :--- |
| Register Address | Bits $0-3$ according to tables or |
| Register Value | the description above |

Response the description above

Echo of the request
"16 (0x10) Write Multiple Registers"
Request
Valid Register Starting Address 0 or 1
Valid Quantity of Registers 2
Byte Count $\quad 2 \times$ Quantity of registers
$\begin{array}{ll}\text { Registers Value } & \begin{array}{l}\text { Quantity of registers } \times 2 \text { Byte } \\ \text { Bits } 0-3 \text { according to tables }\end{array}\end{array}$
Response
Function Code, Register Starting Address, Quantity of Registers

### 8.2 Bit rate setting with Modbus command

Parity and bit rate have the same value as when setting them by address switch.
If Parity or Bit has the value 0 , no setting or storage is carried out.
The register content is stored in the EEPROM.
"06 (0x06) Write Single Register"
Request

|  | $\begin{aligned} & \text { lid Re } \\ & \text { lid } \mathrm{e} \end{aligned}$ | $\begin{aligned} & \text { egist } \\ & \text { egist } \end{aligned}$ | ter | $\begin{aligned} & \text { Add } \\ & \text { Valu } \end{aligned}$ | dress |  |  |  | tes |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 14 | 13 | 12 | 211 | 111 | 10 | 9 | 8 | 7 |  | 6 | 5 | 4 | 3 | 2 |  | 1 | 0 |
| 0×53 |  |  |  |  |  |  |  |  |  | Parität |  |  |  | Bitrate |  |  |  |  |

Bit 15-8: Magic-Number 0x53 $=83$ as protection against accidental writing.
and will be further analysed only with this number.

| Bit 7-4 | 1 | 2 | 3 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parität | even | odd | none |  |  |  |  |  |  |
| Bit 3-0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| Bitrate | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200 |  |

Response
Echo of Request
Example for a frame:
Function
$0 \times 12$ Setting of rotary switch (18)
Function $0 \times 06$ Write Single Register
Register address Lo
Register address Lo
Register contents Hi 0x53 Magic-Number
Register contents Lo $0 \times 15$ Parity Even, 19200 Baud
All devices can be switched simultaneously with a Broadcast command (Slave address 0x00) However, it is advised not to do so as this can cause problems:

Devices from other manufacturers may have under this address a register for a different purpose that will then be operated in the wrong way.
There is no feedback from the individual devices. Consequently the control cannot immediately recognize if the command was correctly received.

## Continuation Software description

It is safer to address and switch each device individually.
The device will then answer with the old settings of parity and bit rate. Switching will take place only afterwards. However, the answer can get lost if the bus is disturbed.
When all devices are switched; it is advised to check communica-
tion. Any function of the device providing a feedrack is suitableIf a single function is to be used being independent from the process periphery then the function „Diagnostic" sub-function "Return Query Data" is suitable, it returns the transferred data.
If bit rate and parity setting of a device are unknown it is possible to address the device successively with all combinations of bit rate and parity until the device answers. Try the most likely combinations first. Try the lower bit rates last as they take longer.

### 8.3 General commands

## "08 (0x08) Diagnostics"

Subfunction " 0 ( $0 \times 0000$ ) Return Query Data"
Data Field Any
Response: Echo of Request
Subfunction " ( $0 \times 0001$ ) Restart Communication Option" Data Field 0x0000 oder 0xFFOO
Response: Echo of Request
Action: Clears all Error Counters, Restarts node
Subfunction " 4 ( $0 \times 0004$ ) Force Listen Only Mode
Data Field $0 \times 0000$
No Response
Action: No response until Node Reset or Function Code 08 Subcode 01
Subfunction "10 (0x000A) Clear Counters"
Data Field 0x0000
Response: Echo of Request
Action: Clears all Error Counters
Subfunction "11 (0x000B) Return Bus Message Count" Data Field $0 \times 0000$
Response: Quantity of messages that the remote device has detected on the communications system since its last restart, clear counters operation, or power-up.
Subfunction "12 (0x000C) Return Bus Communication Error Count" Data Field $0 \times 0000$
Response: Quantity of errors encountered by the remote device since its last restart, clear counters operation, or power-up. (CRC, Length $<3$, Parity, Framing
Subfunction "13 (0x000D) Return Bus Exception Error Count" Data Field $0 \times 0000$
Response: Quantity of MODBUS exception responses returned by the remote device since its last restart, clear counters operation, or power-up.
Subfunction "14 (0x000E) Return Slave Message Count" Data Field 0x0000
Response: quantity of messages addressed to the remote device, or broadcast, that the remote device has processed
since its last restart, cear since its last restart, clear counters operation, or power-up.
Subfunction "15 (0x000F) Return Slave No Response Count" Data Field 0x0000
Response: Quantity of messages addressed to the remote device for which it has returned no response (neither a normal response nor an exception response), since its last restart, clea
counters operation, or power-up.

## Continuation Software description

"43 /14 (0x2B / Ox0E) Read Device Identification"

| Request |  |
| :--- | :--- |
| Read Device ID code: | $0 \times 0$ |
| Object ID | $0 \times 00$ |

Response
Device ID code 0x01

Conformity leve
$0 \times 01$
More follows
Next object ID OxOO
Number of objects 0x03
bet
Object Lengt
Object Value
becti
Object Length
Object Value
bject Valu
Object ID
0x02
Object Value $\quad$ "V10

